
Research Statement:
Formal Methods to Ensure Trustworthiness in Deep Learning

Yuhao Zhang, University of Wisconsin–Madison
https://pages.cs.wisc.edu/~yuhaoz/

Deep learning has rapidly emerged as a transformative technology that permeates all modern software,
from autonomous driving systems to malware-detection tools. Considering the critical role of this
software in our technologies, it must behave as intended. However, the complexity introduced by
deep-learning components complicates formal reasoning about the behavior of such software, frequently
resulting in solutions that offer only empirical or no guarantees. My research contributes techniques and
algorithms that increase the trustworthiness of deep-learning-powered software by providing strong
provable guarantees across the components existing in the entire deep learning pipeline.

The goal of my research is to ensure the safety, security, and reliability of all components of
deep-learning-powered software by providing provable guarantees via formal methods.

I have worked on three essential components of deep-learning-powered software to achieve this
research goal. Below, I will describe these three research directions that shaped my PhD research.

Correctness of code built on deep learning platforms: building tools for ensuring the correctness of
deep learning training and inference code built on top of TensorFlow/PyTorch.

Robustness of deep learning model inference: proving and improving the robustness of deep learning
models against inference-time adversarial examples.

Integrity of deep learning model training: designing certifiable defenses against data poisoning and
backdoor attacks during training.
I will summarize major contributions for each direction. I will then conclude with my future research

plans on (1) robustness for large language models, (2) end-to-end verification in deep-learning-powered
software, and (3) integration of verification and interpretability.

1 Correctness of Code Built on Deep Learning Platforms

Deep learning models have made remarkable advancements in solving complex and diverse problems.
The training and inference of these models are coded on top of platforms like TensorFlow and PyTorch.
This coding requires a programming paradigm that differs significantly from traditional ones. For
instance, programming logic relies more heavily on intensive matrix operations and activation functions
than traditional programming structures such as branches and loops. As a result, new defects have
emerged in deep learning code, and we need to rethink the problem of verifying code correctness and
providing provably correct fixes to these defects.

In my research on providing provable guarantees for the correctness of deep learning code, I pose
the following questions: What are these new defects? Which defect type is of most concern to the deep learning
community? The first question led me to conduct a pioneering empirical study of novel defects in deep
learning code. This study found that numerical defects, which often manifest as NaN or INF during neural
network computations, are prevalent in deep learning code and can significantly impair the model
accuracy, potentially leading to system crashes. This finding addressed the second question and guided
my work on ensuring that deep learning code is free of numerical defects.

Research Statement 1

https://pages.cs.wisc.edu/~yuhaoz/


Papers: ISSTA 2018 [9], FSE 2020 [10] (Distinguished Paper Award, Key paper), ICSE 2023 [3]

Key ideas: (1) A pioneering empirical study of defects in deep learning code. (2) An abstract
interpretation technique for verifying the absence of numerical defects. (3) A framework for
reliability assurance against numerical defects by providing failure-exhibiting tests and provably
correct fix suggestions.

A pioneering empirical study of defects in deep learning code Motivated by the need to investigate
emerging defects in deep learning code, I conducted a pioneering empirical study [9] on the root
causes, symptoms, and fixing strategies of these new defects. This empirical study not only serves as a
bedrock of my work but also inspires numerous initiatives in the research community. For example,
our study identified new defects such as unaligned-shape defects, where the shape of a tensor, a data
structure predominantly used in deep learning, does not align with its expected shape. Subsequently, a
corresponding approach [1] has been proposed to detect this new defect. Additionally, Islam et al. [2]
conducted a further empirical study and “adapted the classification scheme of root causes and bug
effects” from our study.
Verification of the absence of numerical defects My work, DEBAR [10], detects numerical defects
in deep learning code. It can either construct a proof confirming the absence of numerical defects
within the code or identify suspicious computational graph nodes that may have numerical defects. To
construct such proof, I design refined yet scalable abstract domains, tensor partitioning and interval with
affine equality relation, to over-approximate the output range of each node in the computational graph. If
a node receives an invalid range or its output overflows, DEBAR will report this node as suspicious.
And if no such node exists in the code, DEBAR then gets a correctness proof owing to the soundness of
abstract interpretation. DEBAR is highly scalable as it only takes an average of 12.1 seconds for each
model, while maintaining a low false positive rate of 7.7%. DEBAR has received recognition with the
ACM SIGSOFT Distinguished Paper Award at FSE 2020 and it detected 11 real-world bugs of 48
models implemented in an official repository maintained by the TensorFlow team1.
Provably correct fixes to numerical defects Once the defects are identified, developers need to fix them.
We found that developers either provided no fixes or designed heuristic fixes that did not eliminate
these defects, such as reducing the learning rate. Such heuristic fixes often delay the triggering of
numerical defects during training and further obscure the defects. Our work, RANUM [3], automatically
synthesizes provably correct fixes to these defects for developers. The fixes take the form of clipping the
input ranges of some computational graph nodes. Striking the right balance with these input ranges
is critical; overly tight ranges can hinder the model accuracy, whereas overly wide ranges may still
result in numerical defects. We propose an optimization algorithm to find the tightest input ranges that
provably eliminate the defects.

2 Robustness of Deep Learning Model Inference

A unique characteristic of deep learning models is their vulnerability to malicious attacks, even when
the underlying code implementations are correct. Among the various types of attacks, inference-time (or
test-time) attacks have been extensively studied as they directly affect the performance and reliability
of the model. These attacks craft a human-imperceptible perturbation to the test input to deceive the
model into making incorrect predictions.

Test-time defenses and attacks on deep learning models have been a never-ending cat-and-mouse
game. My research aims to end this game by providing deep learning model inference with well-defined
and provable guarantees. I focus on the robustness verification of language models, an area previously

1See e.g., https://github.com/tensorflow/models/pull/8221, https://github.com/tensorflow/models/pull/8223

Research Statement 2

https://github.com/tensorflow/models/pull/8221
https://github.com/tensorflow/models/pull/8223


unexplored due to the challenge of the discreteness of the inputs.

Papers: ICML 2020 [5], EMNLP 2021 [6] (Oral Presentation, Key paper)

Key ideas: (1) Languages for describing test-time robustness for deep learning models. (2) An
abstract interpretation technique for verifying model robustness. (3) Training approaches for
improving model robustness.

Programmable perturbation space Existing work on robustness for deep learning model inference
employs ad-hoc perturbations tailored to specific attacks, such as synonym substitutions. However,
these perturbations do not apply to a wide range of scenarios. To address this limitation, I introduced
the concept of a programmable perturbation space [5] and designed a language for defining attack-
s/perturbations to input sequences for language models. The versatile language allows users to express
their specific robustness requirements as user-defined string transformations and combinations. For
example, it can express a perturbation that removes stop words and duplicates exclamation and question
marks in a movie review. Furthermore, this language enables robustness verification and training
approaches [5, 6] to compile and understand users’ needs seamlessly.
Verifying robustness of recursive models Given a programmable perturbation space as a specification,
my approach, ARC [6], generates proofs of robustness for recursive models, such as LSTMs or Tree-
LSTMs. The key idea underlying ARC involves symbolical memoization and abstraction of sets of possible
hidden states, a task that otherwise would become infeasible for enumeration due to its exponential
growth with the input length. As ARC over-approximates the sets of all possible outcomes, it captures
the worst-case scenario, thus establishing proofs for model robustness.
Robust training approaches When given a programmable perturbation space, the challenge of training
robust models against the space lies in accurately approximating the worst-case loss. Traditional
approximation methods provide loose approximations, such as the under-approximation by adversarial
training or the over-approximation by provable training [6]. To overcome this challenge, I proposed
A3T [5], an innovative approach that approximates the worst-case by decomposing the programmable
perturbation space into two subsets: one that can be explored using adversarial training and another
that can be abstracted using provable training. This novel idea of decomposition has been adopted by
the state-of-the-art robust training method, SABR [4].

3 Integrity of Deep Learning Model Training

High-quality, abundant data is crucial for training deep learning models to address complex problems.
However, the integrity of this data is threatened by data poisoning attacks, where an attacker can subtly
modify the training set to manipulate the model’s predictions. Such attacks have been successfully
utilized to surreptitiously insert backdoors into deep learning models.

This concern for data-poisoning attacks on deep learning models has led to my research on certified
defenses ensuring the integrity of deep learning model training.

Papers: Neurips 2022 [7] (Key paper), Under Submission [8]

Key ideas: (1) Probabilistic and deterministic certified defenses against training-time attacks. (2)
A holistic view of handling test-time and training-time threats.

Certified defenses against test-time and training-time attacks in a holistic view I have proposed
two certified defenses, BagFlip [7] and PECAN [8], against data poisoning attacks that can modify
both the training set and test inputs. These defenses construct a verifiable training algorithm Ā over

Research Statement 3



the original algorithm A by creating an ensemble of models, each trained on subsets of the training
data. These defenses adopt a holistic view of inference and training processes by regarding these
processes as a closed box, abstracting away the intricate details of the training algorithm, which can
pose challenges for verification techniques in establishing meaningful bounds. Leveraging this holistic
view, BagFlip employs randomized smoothing to construct probabilistic proofs. In contrast, PECAN
generates deterministic proofs by seamlessly integrating training-time and test-time proofs derived from
corresponding techniques.

4 End-to-end Verification to Large-Scale Models and Their Interpretability

I envision a world where deep-learning-powered software is universally employed, allowing everyone
to enjoy the substantial benefits it offers and where everyone trusts such software due to its thoroughly
verified trustworthiness. My work has shown that we can design new formal-method approaches to
provide provable guarantees for code built on deep learning platforms, and for the inference and training
of deep learning models. Therefore, over the next 5-10 years, I will persist in pursuing the thoroughly
verified trustworthiness of deep-learning-powered software, focusing on three key objectives:

Robustness for Large Language Models As deep learning models continue to grow in scale, exem-
plified by the prevalence of large language models (LLMs) with billions of parameters, the concept
of their robustness needs reformulation. This need arises from the transition from classification
to generation tasks, driven by the remarkable generative capabilities of LLMs. My future goal is
to redefine the robustness of LLMs, particularly those generating code, and to devise methods
for providing rigorous robustness guarantees. This goal encompasses two challenging tasks: (1)
defining the functional equivalence of code snippets generated by LLMs given different inputs from
programmable perturbation space [5], and (2) scaling existing verification techniques to accommodate
the enormous size of LLMs. My previous research on defining input perturbations of language
models [5] and designing an efficient verification technique for recursive models [6] has laid a
foundation for this transition of robustness.

End-to-end Verification in Deep-Learning-Powered Software Ensuring the correctness and reliability
of deep-learning-powered software requires a comprehensive perspective, as a flaw in any component
can lead to the failure of the entire software. This perspective necessitates expanding the verification
beyond just the code built on deep learning platforms to include the deep learning platforms
themselves, deep learning compilers, and the underlying deep learning systems. I seek to expand
the scope of verification to encompass all the components in deep-learning-powered software. An
illustrative example of this involves guaranteeing numerical stability when applying the gradient
scaling technique and mixed-precision training, both essential components of LLM training platforms.
My research [10] on detecting numerical defects in deep learning code can serve as the initial
endeavor for verifying these components in LLM training platforms.

Integration of Verification and Interpretability The opacity of deep learning models is a major
reason for model verification. However, existing verification techniques still treat models as closed
boxes. I aim to integrate model verification and interpretability, focusing on two key questions: (1)
can interpretability techniques improve the precision of verification techniques by opening the closed
box? (2) Can we provide formal guarantees for model interpretations? Specifically, I plan to devise
techniques for proving the robustness of counterfactual explanations, which are commonly used in
socially salient situations.
These three objectives reflect my current interests, but other practical problems will continue to

contribute to my main goal of providing provable guarantees to ensure the safety, security, and reliability of
deep-learning-powered software.

Research Statement 4



References

[1] M. Hattori, S. Sawada, S. Hamaji, M. Sakai, and S. Shimizu. Semi-static type, shape, and symbolic
shape inference for dynamic computation graphs. In 4th ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, pages 11–19, 2020.

[2] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan. A comprehensive study on deep learning bug
characteristics. In M. Dumas, D. Pfahl, S. Apel, and A. Russo, editors, Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, pages 510–520. ACM,
2019.

[3] L. Li, Y. Zhang, L. Ren, Y. Xiong, and T. Xie. Reliability assurance for deep neural network
architectures against numerical defects. In 45th IEEE/ACM International Conference on Software
Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, pages 1827–1839. IEEE, 2023.

[4] M. N. Müller, F. Eckert, M. Fischer, and M. T. Vechev. Certified training: Small boxes are all you
need. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023.

[5] Y. Zhang, A. Albarghouthi, and L. D’Antoni. Robustness to programmable string transformations
via augmented abstract training. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 11023–11032. PMLR, 2020.

[6] Y. Zhang, A. Albarghouthi, and L. D’Antoni. Certified robustness to programmable transformations
in lstms. In M. Moens, X. Huang, L. Specia, and S. W. Yih, editors, Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican
Republic, 7-11 November, 2021, pages 1068–1083. Association for Computational Linguistics, 2021.

[7] Y. Zhang, A. Albarghouthi, and L. D’Antoni. Bagflip: A certified defense against data poisoning.
In NeurIPS, 2022.

[8] Y. Zhang, A. Albarghouthi, and L. D’Antoni. PECAN: A deterministic certified defense against
backdoor attacks. CoRR, abs/2301.11824, 2023.

[9] Y. Zhang, Y. Chen, S. Cheung, Y. Xiong, and L. Zhang. An empirical study on tensorflow program
bugs. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018, pages 129–140, 2018.

[10] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S. Cheung, and T. Xie. Detecting numerical bugs in neural
network architectures. In P. Devanbu, M. B. Cohen, and T. Zimmermann, editors, ESEC/FSE ’20:
28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, November 8-13, 2020, pages 826–837. ACM, 2020.

Research Statement 5


	Correctness of Code Built on Deep Learning Platforms
	Robustness of Deep Learning Model Inference
	Integrity of Deep Learning Model Training
	End-to-end Verification to Large-Scale Models and Their Interpretability

