CodeFort: Robust Training for Code Generation Models

Yuhao Zhang, Shiqi Wang, Haifeng Qian, Zijian Wang, Mingyue Shang, Linbo Liu, Sanjay Krishna Gouda, Baishakhi Ray, Murali Krishna Ramanathan, Xiaofei Ma, Anoop Deoras

Abstract

Code generation models are not robust to small perturbations, which often lead to inconsistent and incorrect generations and significantly degrade the performance of these models. Improving the robustness of code generation models is crucial to better user experience when these models are deployed in real-world applications. However, existing efforts have not addressed this issue for code generation models. To fill this gap, we propose CodeFort, a framework to improve the robustness of code generation models, generalizing a large variety of code perturbations to enrich the training data and enabling various robust training strategies, mixing data augmentation, batch augmentation, adversarial logits pairing, and contrastive learning, all carefully designed to support high-throughput training. Extensive evaluations show that we improve the average robust pass rates of baseline CodeGen models from 14.79 to 21.74. Notably, the improvement in robustness against code-syntax perturbations is evidenced by a significant decrease in pass rate drop from 95.04% to 53.35%.

1. Introduction

Code generation models (Li et al., 2023; Nijkamp et al., 2023b,a; Fried et al., 2023; Luo et al., 2023; Rozière et al., 2023) have demonstrated impressive performance in generating code from natural language descriptions, completing sections of code, and even tackling complex coding contest challenges. These models have the potential to offer assistance to software engineers and increase their productivity.

However, code generation models are not robust to minor perturbations in the input prompts (e.g., inserting whitespaces/typos in docstrings or substituting variable names in code), i.e., they often generate inconsistent and incorrect outputs, thus significantly degrading their impressive performance on nominal prompts and hurting user experience when deployed in real-world applications (Wang et al., 2023b). Figure 1 shows that the performance of the state-of-the-art (SOTA) public code models (Nijkamp et al., 2023b; Li et al., 2023; Luo et al., 2023) significantly declines under semantic-preserving program transformations, particularly in the case of code-syntax perturbations. Thus, it is necessary to improve the robustness of models before they can be universally adopted and deployed.

Despite extensive research efforts to improve the robustness of code-related tasks, beyond code generation, such as vulnerability prediction, clone detection, and code summarization, existing work has not tackled two unique challenges of improving the robustness of code generation models, primarily trained using casual language modeling (CLM).

Challenge 1: Distinct Robustness Definition

Unlike traditional classification tasks like vulnerability detection, where models produce a single classification, code generation models generate sequences, leading to a shift in the definition of robustness for certain perturbations. In code generation, model robustness is defined by generating a coherent output given an input perturbation. In contrast, in classification tasks, models are expected to maintain the same classification before and after perturbation. For instance, if a variable i is renamed to b in the input prompt (as illustrated in Figure 2b), a robust code generation model...
should generate completions with the variable \(\theta \) rather than maintain the original name \(\phi \). This distinction necessitates defining a new category of perturbations for code generation models and designing corresponding robust training approaches to tackle this new category.

Challenge 2: Designing Robust Training Approaches

As code perturbations can insert dead code or typos into training data, directly training using data augmentation could adversely affect the model performance, leading to issues like generating dead code or typos. Furthermore, applying more deliberate robust training approaches such as adversarial logits pairing (ALP) (Kannan et al., 2018) and contrastive learning (CL) to CLM presents unique challenges. ALP, designed for single-class classification, requires careful alignment between original and perturbed sequences, complicated by potential differences in sequence lengths. Although CL has demonstrated efficacy in improving the robustness of code representations in masked language modeling (MLM) (Devlin et al., 2019), its applicability to improving the robustness of code generation models remains unexplored. Directly applying the CL objective (ContraSeq) from ContraBERT (Liu et al., 2023) and ContraCode (Jain et al., 2021) on sequence representations may not cater to CLM, which involves discriminating representations at a finer level and goes beyond just sequence representations. Notably, this adoption shows negligible robustness improvement on CLM code models (Section 5.3). Thus, designing CL objectives tailored to finer granularities is imperative.

To tackle the above two challenges and improve the robustness of code generation models, we introduce a structured definition of code perturbations (Section 3) and design a novel framework named CodeFort (Section 4). CodeFort generalizes various code perturbations to enrich the training data and enables robust training with different approaches.

To address Challenge 1, we classify existing code perturbations into two categories: context-free and context-sensitive, based on the formal definition of code perturbations provided in Section 3. Context-free perturbations, such as the docstring perturbation in Figure 2b, follow the traditional notions of robustness, whereas context-sensitive perturbations, such as the code-syntax perturbation in Figure 2d, specific the distinct robustness definition highlighted in Challenge 1. The distinction of these two categories allows CodeFort to employ different robust training methods according to each category. Moreover, we propose two novel approaches tailored to context-sensitive robustness: ALP with name-Dropout (ALPD) and name-level CL (ContraName).

To address Challenge 2, CodeFort employs example-level and sequence-level pairing to enrich the training set. These two pairing levels allow 1) a masking mechanism to mask unnatural perturbed tokens and 2) a careful alignment between the original and perturbed token sequences, addressing the crucial challenge of applying data augmentation and ALP to CLM. Additionally, we propose a novel token-level CL (ContraToken) inspired by Jain et al. (2023). ContraName and ContraToken empower CLM to discriminate finer-grained representations.

We utilize CodeFort to extensively evaluate various strategies, mixing data augmentation, batch augmentation, ALP, and CL. Our best approach mixing batch augmentation with the masking mechanism, ALP, and ALPD significantly enhances the model robustness, surpassing the sub-optimal results achieved by data augmentation. Notably, the pass rate drop due to code-syntax perturbations is improved from 95.04% to 53.35%. Our ablation studies show that ContraSeq, the CL objective used in previous work for MLM, has negligible robustness improvements on CLM.

We summarize our contributions: 1) a framework, CodeFort, for improving the robustness of code generation models trained by CLM, addressing the unique challenges of distinct robustness definition and designing robust training approaches, 2) designs of robust training approaches, ALP, ALPD, ContraToken, and ContraName tailored to CLM, 3) an extensive evaluation of different robust training approaches, and 4) a surprising finding that the ContraSeq CL objective, which is known to be beneficial for improving robustness of other code related tasks, has negligible robustness improvements on CLM.

2. Related Work

Adversarial Attacks on Code-Related Tasks Numerous adversarial attacks (Henkel et al., 2022; Zhang et al., 2020; Yefet et al., 2020; Jha & Reddy, 2023; Srikant et al., 2021; Anand et al., 2021; Gao et al., 2023) have targeted encoder-decoder models in code-related tasks, including classification (e.g., vulnerability prediction, clone detection) and generation (e.g., code summarization, comment generation). Key methods include CODA (Tian et al., 2023), which exploits syntactic differences for adversarial example generation; CARROT (Zhang et al., 2022), employing a lightweight hill climbing for optimization in attacks; and ALERT (Yang et al., 2022), which creates naturalness-aware attacks using pre-trained models. Unlike these approaches, we focus on improving the robustness of code generation models trained using casual language modeling. We assess our approaches’ effectiveness in code generation through ReCode (Wang et al., 2023b), a benchmark for evaluating robustness via semantic-preserving program transformations.

Robust Training on Code-Related Tasks Adversarial attacks typically enhance model robustness through data
We address the robustness challenge in a code generation model f trained using Causal Language Modeling (CLM). CLM predicts the next token in a sequence, and the model can only attend to tokens on the left. Formally, given a sequence of tokens $x = x_1, \ldots, x_n$, the generation model f captures $p_f(\cdot \mid x_i)$, representing the conditional probabilities of the i-th token given the preceding tokens $x_i = x_1, \ldots, x_{i-1}$. The model is trained on a dataset $D = \{x^j\}_{j=1}^m$ using cross-entropy loss $\mathcal{L}_{\text{CLM}}(x) = - \sum_{i=1}^{n} \log p_f(x_i \mid x_i)$. The generation model f determines the most likely next token \hat{x}_i by selecting the token with the highest probability in $p_f(\cdot \mid x_i)$ from the entire vocabulary V, $\hat{x}_i = \argmax_{v \in V} p_f(v \mid x_i)$.

Utilizing a given decoding strategy, such as greedy or temperature sampling (Holtzman et al., 2020), the generation model f produces a sequence of tokens by iteratively predicting the next tokens until a specified stop criterion is reached. We denote $f(x_i) = \hat{x}_i$ as the generated token sequence by f. The terms prompt, completion, and ground truth refer to the input x_i, the output \hat{x}_i, and the original completion $x_i = x_1, \ldots, x_n$, respectively.

In code generation, the token sequence x represents a code snippet. Figure 2a shows a problem in HumanEval (Chen et al., 2021). Each prompt x_i in a problem contains a function signature and a corresponding docstring description, and each ground-truth completion x_i is the correct function implementation. A code generation model f is asked to generate a completion, denoted as \hat{x}_i. If the completed function $x_i + \hat{x}_i$ passes all the hidden test cases, the generation x_i is deemed correct, denoted as $\text{Cor}(x_i + \hat{x}_i) = true$. Otherwise, if any of the tests fail, $\text{Cor}(x_i + \hat{x}_i) = false$.

3. Problem Definition

While Zhou et al. (2022) propose random input token masking to lessen dependence on non-robust features, our method selectively masks perturbed tokens during loss calculation to avoid the model generating unnatural perturbations. In contrast to ContraCode (Jain et al., 2021) and ContraBERT (Liu et al., 2023), which apply contrastive learning to classification and code translation tasks by improving robustness in masked language modeling, we focus on the efficacy of contrastive learning in decoder-only code generation models. Although ContraCLM (Jain et al., 2023) enhances the discrimination of CLM’s representations, it does not specifically target robustness improvement.

3.1. Code Perturbations

ReCode (Wang et al., 2023b) is a comprehensive robustness evaluation benchmark for code generation models containing semantic-preserving code perturbations across four classes: docstring, function-name, code-syntax, and code-format perturbations. We present examples from these four classes and encourage readers to refer to the original paper for more detailed descriptions.
Docstring Perturbations rewrite natural language in docstrings and comments, including edits like adding typos and substituting synonyms (See Figure 2b). Function-Name Perturbations refactor some function names, e.g., changing from snake_case to camelCase and adding typos (See Figure 2b). Code-Syntax Perturbations apply perturbations related to code syntax, involving changes such as inserting deadcode and renaming variables (See Figure 2d). Code-Format Perturbations change the code snippets’ format, e.g., adding newlines and splitting a line into two (See Figure 2d).

We define a code perturbation, denoted by π, as a collection of string transformations. Each transformation $T : \mathcal{X} \mapsto \mathcal{X}$ operates on a token sequence from the input domain \mathcal{X}, altering them to produce a perturbed sequence. Within π, each transformation specifies different positions and replacements for perturbation.

Example 3.1. The VarRenamer perturbation, shown in Figure 2c, is a code perturbation π. It contains an infinite set of string transformations that specify 1) which variable name to change and 2) the new variable name. The former contains two choices: τ and τ'. And the latter contains infinite choices of valid variable names.

We introduce two categories, context-free and context-sensitive perturbations, which serve as a high-level interface for generating perturbed datasets and facilitating robust training. We formalize the distinctive characteristics of these two categories in the following sections.

3.1.1. Context-Free Perturbations

A code perturbation π is a context-free perturbation if all perturbed prompts generated by π should not affect the ground-truth completion. Formally, for all $T \in \pi$, the concatenation of the prompt perturbed by T and the ground-truth completion remains a correct function:

$$\forall T \in \pi, \text{Cor}(T(x_i) + x_c)$$

Example 3.2. In Figure 2b, the SynonymSubstitution perturbation in the docstring will not affect the ground-truth completion.

3.1.2. Context-Sensitive Perturbations

A code perturbation π is a context-sensitive perturbation if any perturbed prompt generated by π results in coherent changes to the ground-truth completion. Formally, for all $T \in \pi$, the concatenation of the prompt perturbed by T and its ground-truth completion perturbed correspondingly is a correct function, while the concatenation of the perturbed prompt and the original ground-truth completion is not.

$$\forall T \in \pi, \text{Cor}(T(x_i) + T(x_c)) \land \neg \text{Cor}(T(x_i) + x_c)$$

Example 3.3. In Figure 2d, the VarRenamer perturbation requires the ground-truth completion to change coherently because all the variable b should be renamed to b'.

3.2. Robustness of Code Generation Models

To define model robustness, we say a model f is robust to a perturbation π, if

$$\forall T \in \pi, \text{Cor}(T(x_i) + f(T(x_i)))$$

Notice that the robustness against context-free perturbations is similar to the traditional robustness definition, in which the perturbation should not change the model results (Eq 1). However, the robustness against context-sensitive perturbations differs from the traditional robustness definition, as the context-sensitive robustness requires the model output to change coherently with the perturbed prompt (Eq 2).

4. CodeFort: A Robust Training Framework

CodeFort enhances the training set with a paired dataset generation module, as detailed in Section 4.1. This process involves tokenizing code snippets before and after perturbations into pairs of original and perturbed token sequences, thereby creating a paired dataset. Each token in the original sequence is matched with its equivalent in the perturbed sequence. Section 4.2 outlines our robust training strategies.

4.1. Paired Dataset Generation

The paired dataset generation method offers two types of pairings: example-level and sequence-level. Example-level pairing matches each original training example with its perturbed counterpart. Sequence-level pairing provides more detail by matching each token segment from the original example to its equivalent in the perturbed example. These pairing mechanisms are essential for the robust training strategies discussed in Section 4.2.

Example-level Pairing Given a training set $D = \{x^i\}_{j=1}^m$, where each training example is a code snippet, the paired dataset generation module returns a set of paired training samples $\{(x^i, \tilde{x}^j)\}$, where \tilde{x}^j is the code snippet perturbed by some code perturbations. To obtain \tilde{x}^j, we first randomly choose t code perturbations $\{\pi_1, \ldots, \pi_t\}$ in ReCode. Then, we randomly choose one string transformation from each code perturbation and apply it to the original code snippet x,

$$\tilde{x} = T_t(T_{t-1}(\ldots T_1(x) \ldots)), \quad T_i \in \pi_i, \forall 1 \leq i \leq t. \quad (4)$$

Sequence-level Pairing Given a pair of code snippets, (x, \tilde{x}), the paired dataset generation module further provides finer-granularity paring for this pair.

Example 4.1. Consider the following pair of tokens,
Learning to generate these unnatural perturbed tokens could adversely affect the original model performance, leading to issues like generating dead code or typos. We propose masking the CLM loss of these unnatural perturbed tokens to address these issues. We define the CLM loss for the example x after masking out the unnatural perturbed tokens

$$L_{CLM}(x, m) = - \sum_{i=1}^{|x|} \frac{1}{|x|} \log p_f(x_i | x_i),$$

where $m_i \neq F$ means that the i-th token is not perturbed by a context-free perturbation (see Example 4.2). We design the masked data augmentation loss L_{MDA} by replacing the term $L_{CLM}(\tilde{x})$ in Eq 5 with the masked loss $L_{CLM}(\tilde{x}, m)$.

4.2.2. Batch Augmentation

Batch augmentation (Hoffer et al., 2019) duplicates a portion of training examples within the same batch with different perturbations. It differs slightly from data augmentation, where a batch contains p perturbed and $1 - p$ original data. In batch augmentation, the entire batch is augmented with p perturbed rather than replacing p original data with perturbed data as in data augmentation. Given a training batch and its paired perturbed batch, the objective function of batch augmentation is defined as follows,

$$L_{MBA} = \sum_{j=1}^{b} a_j L_{CLM}(\tilde{x}^j, \tilde{m}^j) + L_{CLM}(x^j)$$

Note that we apply the masking mechanism to batch augmentation as well. When batch augmentation was originally proposed, its primary goal was not to improve the robustness of the model. However, we hypothesize that it can further improve the robustness over data augmentation, as indicated in some multilingual cases (Ahmed & Devanbu, 2022; Wang et al., 2023a).

4.2.3. Adversarial Logits Pairing

Adversarial Logits Pairing (ALP) (Kannan et al., 2018) improves the robustness of classification models by minimizing the KL divergence between the original input’s prediction distribution and the perturbed input’s prediction distribution. However, adapting ALP from classification models to generation models trained by CLM is challenging. One straightforward approach is decomposing the generation task into multiple next-token prediction tasks. However, the original and the perturbed token sequences can have different lengths due to some transformations adding or removing tokens. This length discrepancy prevents a direct match of each token’s prediction between the two sequences.

To address this challenge, we leverage the sequence-level pairing provided by our paired dataset generation module.
We apply ALP only to the unperturbed segments of the two sequences, marked by U in Example 4.2. All unperturbed segments have the same length, allowing us to apply ALP to the predictions of these unperturbed tokens. We use u and \tilde{u} to denote the ordered indices for all unperturbed tokens in the original and perturbed sequences. The ALP objective is defined as follows,

$$\mathcal{L}_{ALP} = \sum_{j=1}^{L} \sum_{i=1}^{\left|u^j\right|} D_{KL}(p_f(\cdot | \tilde{x}^j_{u^j_i}) \parallel p_f(\cdot | x^j_{u^j_i}))$$

Example 4.3. In Example 4.1, $u = (0, 2, 3, 4)$ and $\tilde{u} = (0, 3, 4, 5)$.

ALP with name-Dropout (ALPD) We design another ALP approach specifically tailored to variable and function rename transformations among context-sensitive perturbations. We propose to reduce the model’s reliance on specific variable and function names by setting the attention masks of a portion of these names to zero. ALPD can be seen as a dropout mechanism specific to entity names. We use $D_p(x)$ to denote the input sequence after name-specific dropout.

$$\mathcal{L}_{ALPD} = \sum_{j=1}^{L} \sum_{i=1}^{\left|u^j\right|} D_{KL}(p_f(\cdot | D_p(x^j_{u^j_i})) \parallel p_f(\cdot | x^j_{u^j_i}))$$

$$+ D_{KL}(p_f(\cdot | D_p(\tilde{x}^j_{\tilde{u}^j_i})) \parallel p_f(\cdot | \tilde{x}^j_{\tilde{u}^j_i}))$$

\mathcal{L}_{ALPD} sums two KL divergence losses: the first over the original sequence after and before dropout, and the second over the perturbed sequence.

4.2.4. CONTRASTIVE LEARNING

Contrastive learning (CL) maximizes the cosine similarity between positive (similar) pairs and minimizes the distance between negative (dissimilar) pairs. The granularity of pairs leads to different designs of CL objectives. This section introduces three designs of CL objectives tailored to CLM. ContraSeq and ContraToken objectives, inspired by ContraCLM (Jain et al., 2023), focus on the levels of sequences and tokens. A novel ContraName objective focuses on the level of variable and function names.

ContraSeq The ContraSeq objective operates at the sequence level, where each pair consists of summarizations of two input sequences. We note that this setting is also adopted in ContraBERT (Liu et al., 2023) and ContraCode (Jain et al., 2021) for improving the robustness of the encoder model trained on masked language modeling (MLM). Since CLM does not have the [CLS] token used in MLM, we compute the average of the hidden states in the last layer as the summarization.

Given a batch $B = \{h_1, \ldots, h_b, \tilde{h}_1, \ldots, \tilde{h}_b\}$ with $2b$ summarizations of original and perturbed sequences, ContraSeq treats the b corresponding original and perturb pairs as positive pairs and other pairs in the batch as negatives. Denoting the temperature hyper-parameter as τ and cosine similarity as \circ, we define the ContraSeq objective as follows,

$$\mathcal{L}_{CSeq} = \sum_{j=1}^{b} g(h^j, \tilde{h}^j, B) + g(\tilde{h}^j, h^j, B),$$

where $g(x, y, B)$ is defined as

$$g(x, y, B) = -\log \frac{\exp(x \circ y / \tau)}{\sum_{h \in B} \exp(x \circ h / \tau) - \exp(1 / \tau)}.$$

ContraSeq represents the coarsest granularity among the three objectives. While ContraSeq is shown to be effective for the goal of MLM by ContraBERT and ContraCode, it may not fully cater to CLM’s objective, which involves discriminating representations at a finer level, beyond just sequence representations, to predict the next token in each prefix. Additionally, ContraSeq poses scalability challenges, as it demands a large batch size to compute a meaningful InfoNCE loss. This challenge restricts ContraSeq’s feasibility to large language models.

ContraToken The ContraToken objective operates at the token level, providing a much finer granularity than ContraSeq. ContraToken aims to discriminate the representation of each prefix. However, as we mentioned in Section 4.2.3, directly treating x_i and \tilde{x}_i as a positive pair does not work due to the potential sequence length difference between original and perturbed sequences. To address this, ContraToken considers two prefixes ending at the same unperturbed token as a positive pair, with other prefix pairs designated as negatives. For the j-th training example, let h_i^j denote the representation of the prefix up to the i-th token, and u_i^j denote the index of the i-th unperturbed token. We define ContraToken objective as:

$$\mathcal{L}_{CTok} = \sum_{j=1}^{b} \sum_{i=1}^{\left|u^j\right|} g(h_i^{j, \tilde{u}_i^j}, \tilde{h}_i^{j, \tilde{u}_i^j}, H^j) + g(\tilde{h}_i^{j, \tilde{u}_i^j}, h_i^{j, \tilde{u}_i^j}, H^j)$$

where H^j contains all the representations of prefixes ending at unperturbed tokens for the j-th training example, i.e., $H^j = \{h_{u_i^j}, \ldots, h_{u_{|u^j|}}^j, \tilde{h}_{u_i^j}, \ldots, \tilde{h}_{u_{|u^j|}}^j\}$.

ContraName To address variable and function rename transformations in context-sensitive perturbations, we design a novel name-level CL objective, ContraName. This objective aims to enhance the discrimination of representations for different variable and function names.
In ContraName, we group representations of variables or functions according to their names. For a name spanning multiple tokens, we use the average of these tokens as its representation. ContraName treats representations within the same group as positive pairs and those across different groups as negative pairs. Notice that the negative pairs in ContraName have explicit semantic differences, i.e., different names should yield different representations. This explicit semantic difference of negative pairs has been shown to improve the effectiveness of CL (Ding et al., 2023).

Suppose in the sequence x, we identify g groups of name representations G_1, G_2, \ldots, G_g, with $G = \bigcup_{i=1}^{g} G_i$, being their union. We define the ContraName objective on the input x as follows,

$$L_{CName}(x) = -\log \left(\frac{\sum_{i=1}^{g} \sum_{h, h' \in G_i} \exp(h \circ h'/\tau)}{\sum_{h, h' \in G} \exp(h \circ h'/\tau)} \right)$$

Example 4.4. Consider the original example in Example 4.1 with $G_1 = \{h_1, h_7\}$ and $G_2 = \{h_8\}$. The perturbed example contains $G_1 = \{h_2, h_7\}$ and $G_2 = \{h_3 + h_2\}$.

The final ContraName objective is the sum of losses over the original sequences and their perturbed counterparts.

$$L_{CName} = \sum_{j=1}^{m} L_{CName}(x^j) + L_{CName}(\tilde{x}^j) \quad (6)$$

5. Evaluation

5.1. General Experimental Setup

Models We use different robust training approaches to fine-tune different sizes of mono-lingual CodeGen models (Nijkamp et al., 2023b): CodeGen-6B, CodeGen-2B, and CodeGen-350M. We provide fine-tuning settings in Appendix A.

Datasets and Benchmarks We use the stack dataset (v1.2) (Kocetkov et al., 2022) as our raw training dataset D. Our dataset generation module uses ReCode (Wang et al., 2023b) to augment the dataset by introducing different code perturbations as \tilde{D}. We set $t = 2$ in Eq 4, i.e., we apply at most two code perturbations to each original code snippet. We set $p = 25\%$ for all robust training approaches.

To evaluate the robustness, we use the ReCode benchmark, which is based on HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021). The docstring and function-name classes in ReCode are perturbed based on the original prompt. The code-syntax and code-format classes are perturbed based on a modified version, where each prompt is appended with half of the ground truth completion.

Metrics We use the following three metrics to assess the nominal and robustness performance of models.

NP@1. We use Pass@k following Chen et al. (2021) to assess the nominal code generation performance. To separate from the Pass@k used for robustness metrics, we name the Pass@k on unperturbed data to be Nominal Pass@k (NP@k). This metric approximates the probability of any k samples passes all the test case, if we randomly choose k samples out of n samples generated by the model for each problem. We use $n = 5$ due to computational constraints. Additionally, as demonstrated in the Recode paper (Wang et al., 2023b), the difference between $n = 10$ and $n = 100$ is already small.

RP$_{10}@1$. To evaluate the robustness of models, we use the same metric introduced in ReCode, the Robust Pass@k (RP$_s@k$). It measures the worst-case Pass@k on s perturbed samples out of n perturbed samples by each model for each perturbation. Here, we use $s = 10$ to harden the robustness gain for training and differentiate performance gaps.

Drop%. Following ReCode, we also report Robust Drop%. It measures the percentage drop from Robustness Pass@k (RP$_s@k$) from Nominal Pass@k (NP@k), indicating the relative robustness changes given perturbations. Lower Drop% means better robustness.

5.2. Effectiveness of Proposed Approaches

Summary of the Results Our approach significantly enhances the robustness of code generation models, surpassing the results of data augmentation. Notably, our approach exhibits the most substantial improvement in robustness against Syntax perturbations, achieving a remarkable 17.83 RP$_{10}@1$ enhancement.

Table 1 summarizes the robust evaluation results for CodeGen models. We use L_{CLM} to denote the baseline method that fine-tunes on the stack dataset (unseen by CodeGen models) without any robust training approaches. Comparing L_{CLM} and the original model (Ori) of CodeGen, we find that fine-tuning on unseen data can already improve model robustness on the Docstring, Function, and Format perturbations, except the Syntax perturbation.

When averaging across four perturbation classes, our approach demonstrates significant improvements in RP$_{10}@1$ —9.37, 6.49, and 4.99 for CodeGen-6B, CodeGen-2B, and CodeGen-350M, respectively, compared to the baseline L_{CLM}. In contrast, data augmentation achieves sub-optimal results with improvements of 7.87, 6.24, and 3.43.

Averaging over all three models, our approach enhances RP$_{10}@1$ by 3.29, 0.88, 17.94, and 5.68 for Docstring, Function, Syntax, and Format perturbations, respectively, compared to the baseline L_{CLM}. Surprisingly, our approach
We conducted statistical analyses using paired-t tests to compare our approach with baseline L_{CLM} and data augmentation L_{DA} across four perturbation classes. Our approach significantly outperforms the baseline L_{CLM} with $p < 0.05$ on all perturbation classes and all models with exceptions of function-name perturbations on CodeGen-6B and CodeGen-2B. We hypothesize that the less pronounced results on function-name perturbations are due to the imbalanced distribution of function names. When comparing our approach with data augmentation L_{DA} (shown in Table 1), we found that our approach significantly outperforms L_{DA} with $p < 0.01$ on six cases, while L_{DA} outperforms our approach with $p < 0.05$ on one case.

5.3. Ablation Studies

Summary of the Results The ablation studies confirm the effectiveness of masked batch augmentation, ALP, and ALPD. ContraSeq provides negligible improvements compared to the baseline (L_{CLM}). ContraToken and ContraName yield mixed results in different settings.

<table>
<thead>
<tr>
<th>Model & Methods</th>
<th>Docstring NP@1</th>
<th>Function NP@1</th>
<th>Syntax NP@1</th>
<th>Format NP@1</th>
<th>Overall Average NP@1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CodeGen-6B</td>
<td>Ori 35.96</td>
<td>12.83</td>
<td>35.96</td>
<td>14.36</td>
<td>52.72</td>
</tr>
<tr>
<td></td>
<td>L_{CLM} 40.07</td>
<td>20.21</td>
<td>40.07</td>
<td>22.18</td>
<td>54.91</td>
</tr>
<tr>
<td></td>
<td>L_{DA} 37.61</td>
<td>20.51</td>
<td>37.61</td>
<td>21.88</td>
<td>52.99</td>
</tr>
<tr>
<td></td>
<td>Ours 37.91</td>
<td>23.13</td>
<td>37.91</td>
<td>22.53</td>
<td>53.16</td>
</tr>
<tr>
<td>CodeGen-2B</td>
<td>Ori 31.27</td>
<td>11.04</td>
<td>31.27</td>
<td>9.75</td>
<td>44.82</td>
</tr>
<tr>
<td></td>
<td>L_{CLM} 32.99</td>
<td>15.78</td>
<td>32.99</td>
<td>16.41</td>
<td>46.22</td>
</tr>
<tr>
<td></td>
<td>L_{DA} 31.62</td>
<td>17.62</td>
<td>31.62</td>
<td>16.61</td>
<td>45.96</td>
</tr>
<tr>
<td></td>
<td>Ours 31.56</td>
<td>19.21</td>
<td>31.56</td>
<td>17.12</td>
<td>50.16</td>
</tr>
<tr>
<td>CodeGen-350M</td>
<td>Ori 17.10</td>
<td>3.57</td>
<td>17.10</td>
<td>3.06</td>
<td>26.75</td>
</tr>
<tr>
<td></td>
<td>L_{CLM} 18.10</td>
<td>6.19</td>
<td>18.10</td>
<td>6.47</td>
<td>29.24</td>
</tr>
<tr>
<td></td>
<td>L_{DA} 18.10</td>
<td>7.45</td>
<td>18.10</td>
<td>7.94</td>
<td>30.11</td>
</tr>
<tr>
<td></td>
<td>Ours 18.33</td>
<td>9.72</td>
<td>18.33</td>
<td>8.05</td>
<td>31.04</td>
</tr>
</tbody>
</table>

This section presents the ablation results of different approaches outlined in Section 4.2 applied to the CodeGen-350M model. We conduct our experiments in two settings. The first setting (Table 2) focuses on context-free perturbations, applying the original data augmentation (L_{DA}) loss to context-sensitive perturbations while varying different approaches for the context-free perturbations. In the second setting (Table 3), we vary approaches for context-sensitive perturbations while maintaining the L_{DA} loss for context-free perturbations. We report the overall average of NP@1, RP10@1, and Drop% across four perturbation classes, with more details reported in Appendix D.

Effectiveness on Masked Batch Augmentation The masked batch augmentation loss L_{MBA} consists of two components: (1) a masking mechanism that masks unnatural perturbed tokens and (2) batch augmentation. Comparing the results of masked data augmentation (L_{MDA}) and data augmentation (L_{DA}) in Table 2 validates the effectiveness of the masking mechanism because L_{MDA} achieves better RP10@1 and Drop% than L_{DA}. To assess the effective-
ness of batch augmentation, we cannot directly compare the results of \mathcal{L}_{MDA} ([2], Table 2) and \mathcal{L}_{MBA} ([4], Table 2) because \mathcal{L}_{MDA} is trained on $p = 25\%$ perturbed data, while \mathcal{L}_{MBA} is trained on $\frac{\mu}{1+p} = 20\%$ perturbed data. For a fair comparison, we train \mathcal{L}_{DA} with $p = 20\%$ perturbed data and report the result at [3] in Table 2. Comparing the results of $\mathcal{L}_{\text{MDA}}(p = 20\%)$ and \mathcal{L}_{MBA} confirms the effectiveness of batch augmentation because \mathcal{L}_{MBA} achieves better NP@1, RP$_{10}@1$, and Drop% than $\mathcal{L}_{\text{MDA}}(p = 20\%)$.

Effectiveness of ALP and ALPD ALP and ALPD are shown to be effective because \mathcal{L}_{ALP} and $\mathcal{L}_{\text{ALPD}}$ both improve the RP$_{10}@1$ and Drop% ([5] vs [4] in Table 2 and [1] vs [2] in Table 3). We further investigate different designs of ALP and ALPD in Appendix D.

Discussion on Contrastive Learning Objectives ContraSeq only provides negligible improvements, as evidenced by [6] vs [0], and [8] vs [5] in Table 2. ContraToken behaves differently in two ablation experiment settings. In the context-free perturbation experiment (Table 2), ContraToken improves the Drop% but negatively impacts the NP@1 and RP$_{10}@1$ ([7] vs [5]). Conversely, in the context-sensitive perturbation experiment (Table 3), ContraToken hurts all metrics ([5] vs [4]). Adding ContraName to the masked batch augmentation loss \mathcal{L}_{MBA} improves the Drop% and RP$_{10}@1$ ([3] vs [1]).

6. Conclusion, Limitations, and Future Work

Our framework, CodeFort, improves the robustness of code generation models by generalizing a large variety of code perturbations to enrich the training data and enabling various robust training strategies. We foresee many future improvements to this paper. First, ALPD and ContraName primarily target function and variable rename perturbations but are not general enough to handle arbitrary context-sensitive perturbations. However, these approaches can be applied to name-entities in general NLP tasks. Second, the robustness improvement of function-name perturbation on CodeGen-6B and CodeGen-2B is insignificant compared to the baseline, necessitating unique strategies to overcome this limitation.

7. Impact Statements

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal consequences of our work, none which we feel must be specifically highlighted here.

References

A. Fine-tuning Settings

We train with $p = 25\%$ perturbed data as CodeGen models has not been fine-tuned on the stack dataset. For CodeGen-2B and CodeGen-6B, we set batch size to 256 and fine-tune them for 10K and 5K steps, respectively, using the AdamW optimizer and a linear schedule with 500 warmup steps and a learning rate 2×10^{-5}. For CodeGen-350M, we set batch size to 512 and fine-tune the model on half of the stack dataset (about 266K steps) using the FusedAdam optimizer and a linear schedule with 500 warmup steps and a learning rate 2×10^{-5}.

We treat all the objective functions proposed in this paper equally, i.e., summing them up without reweighing. For the temperature hyperparameter τ in contrastive learning, we set $\tau = 0.05$ for all experiments following ContraCLM. We set the dropout rate to 0.1 for L_{ALPD}.

B. Detailed Results for Each Perturbation Type

Table 5 shows a detailed breakdown of robustness gain by finetuning with our approach for each perturbation type evaluated on 350M, 2B, and 6B CodeGen models.

C. Qualitative Examples

In this section, we present qualitative examples to demonstrate the robustness improvements of our robust trained models. On these MBPP examples, 6B CodeGen baseline model fails to generate correct completions after applying the perturbations. Our robust trained model, on the other hand, can still successfully complete these problems. Here, we list examples for the top four perturbation types that we have achieved the most improvements (detailed numbers for
Table 5: Robustness evaluation for each category of perturbations on combined HumanEval and MBPP datasets. We highlight in gray the top four perturbation types that we have achieved the most improvements over the baseline L_{CLM}.

<table>
<thead>
<tr>
<th>Categories</th>
<th>Transformations</th>
<th>CodeGen 350M</th>
<th>CodeGen 2B</th>
<th>CodeGen 6B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L_{CLM}</td>
<td>L_{DA}</td>
<td>Ours</td>
</tr>
<tr>
<td>Nominal</td>
<td>Regular</td>
<td>18.10</td>
<td>18.10</td>
<td>18.33</td>
</tr>
<tr>
<td></td>
<td>Partial</td>
<td>29.24</td>
<td>30.11</td>
<td>31.04</td>
</tr>
<tr>
<td>Docstring</td>
<td>BackTranslation</td>
<td>17.35</td>
<td>17.66</td>
<td>17.79</td>
</tr>
<tr>
<td></td>
<td>EnglishInflectionalVariation</td>
<td>10.98</td>
<td>10.98</td>
<td>12.50</td>
</tr>
<tr>
<td></td>
<td>SynonymSubstitution</td>
<td>7.03</td>
<td>8.98</td>
<td>11.20</td>
</tr>
<tr>
<td></td>
<td>TenseTransformationFuture</td>
<td>17.49</td>
<td>17.72</td>
<td>18.33</td>
</tr>
<tr>
<td></td>
<td>TenseTransformationPast</td>
<td>18.12</td>
<td>18.51</td>
<td>18.63</td>
</tr>
<tr>
<td>Function</td>
<td>RenameButterFinger</td>
<td>11.56</td>
<td>11.79</td>
<td>11.90</td>
</tr>
<tr>
<td></td>
<td>RenameCamelCase</td>
<td>17.70</td>
<td>17.72</td>
<td>18.15</td>
</tr>
<tr>
<td></td>
<td>RenameChangeChar</td>
<td>8.54</td>
<td>10.39</td>
<td>10.33</td>
</tr>
<tr>
<td></td>
<td>RenameInflectionalVariation</td>
<td>14.11</td>
<td>14.76</td>
<td>15.20</td>
</tr>
<tr>
<td></td>
<td>RenameSwapChar</td>
<td>11.92</td>
<td>11.86</td>
<td>12.20</td>
</tr>
<tr>
<td></td>
<td>RenameSynonymSub</td>
<td>12.07</td>
<td>12.95</td>
<td>13.04</td>
</tr>
<tr>
<td></td>
<td>WorstCase</td>
<td>6.47</td>
<td>7.94</td>
<td>8.05</td>
</tr>
<tr>
<td>Syntax</td>
<td>DeadCodeInsertion</td>
<td>1.92</td>
<td>15.83</td>
<td>20.77</td>
</tr>
<tr>
<td></td>
<td>DeadCodeInsertionLast</td>
<td>9.24</td>
<td>31.55</td>
<td>32.69</td>
</tr>
<tr>
<td></td>
<td>ForWhileTransformer</td>
<td>27.08</td>
<td>26.99</td>
<td>29.16</td>
</tr>
<tr>
<td></td>
<td>OperatorSwap</td>
<td>27.80</td>
<td>26.91</td>
<td>29.12</td>
</tr>
<tr>
<td></td>
<td>VarRenamerCB</td>
<td>26.52</td>
<td>25.85</td>
<td>27.72</td>
</tr>
<tr>
<td></td>
<td>VarRenamerNaive</td>
<td>24.99</td>
<td>26.31</td>
<td>26.22</td>
</tr>
<tr>
<td></td>
<td>VarRenamerRN</td>
<td>14.75</td>
<td>15.41</td>
<td>15.78</td>
</tr>
<tr>
<td></td>
<td>WorstCase</td>
<td>1.46</td>
<td>8.59</td>
<td>10.67</td>
</tr>
<tr>
<td>Format</td>
<td>Doc2Comments</td>
<td>25.48</td>
<td>27.66</td>
<td>28.75</td>
</tr>
<tr>
<td></td>
<td>NewLineInsertion</td>
<td>20.44</td>
<td>22.32</td>
<td>25.54</td>
</tr>
<tr>
<td></td>
<td>SplitLine</td>
<td>27.07</td>
<td>28.42</td>
<td>30.04</td>
</tr>
<tr>
<td></td>
<td>WorstCase</td>
<td>15.96</td>
<td>18.58</td>
<td>21.58</td>
</tr>
</tbody>
</table>
each perturbation type can be found in Table 5).

DeadCode Insertion. For this perturbation type, ReCode perturbation will insert a redundant code block including an if condition, a for loop, or a while loop. The models will usually be distracted by the inserted blocks, causing failure of completions. Here, in Listing 1, ReCode perturbation inserts a redundant if condition block at line 12-13. Even though the semantic meaning barely changes after this insertion, the 6B baseline model fails to generate the correct answer.

```python
def test_distinct(data):
    """
    Write a python function to determine whether all the numbers are
different from each other are not.
    >>> test_distinct([1,5,7,9])
    True
    >>> test_distinct([2,4,5,5,7,9])
    False
    >>> test_distinct([1,2,3])
    True
    """
    if len(data) == len(set(data)):
        # === completion by baseline model ===
        return False
    else:
        # === completion by our model ===
        return True

Listing 1: DeadCoderInsertion (6B CodeGen)
```

NewLine Insertion. For newline insertions, ReCode will randomly insert empty lines within prompts, and code models commonly perform poor robustness on newline insertions as reported in (Wang et al., 2023b). In Listing 2, 6B baseline model will generate low quality outputs if we simply insert two single empty lines at line 12 and line 15. Our models remain correct under the perturbation.

```python
def count_first_elements(test_tup):
    """
    Write a function to find the element count that occurs before the record
in the given tuple.
    >>> count_first_elements((1, 5, 7, (4, 6), 10))
    3
    >>> count_first_elements((2, 9, (5, 7), 11))
    2
    >>> count_first_elements((11, 15, 5, 8, (2, 3), 8))
    4
    """

Listing 2: NewlineInsertion (6B CodeGen)
```

Synonym Substitution. To perform synonym substitution on docstrings, ReCode will randomly select words within docstrings or comments. It then replaces the selected words to their synonyms according to WordNet (Miller, 1992). In Listing 3, “have” is replaced to be “induce” and “given” to “yield”. With only these two-word changes, 6B baseline model fails. In contrast, our model is much more robust to these changes.

```python
def find_tuples(test_list, K):
    """
    Write a function to find tuples which induce all element divisible by k
from the yield list of tuples.
    >>> find_tuples([(6, 24, 12), (7, 9, 6), (12, 18, 21)], 6)
    '[(6, 24, 12)]'
    >>> find_tuples([(5, 25, 30), (4, 2, 3), (7, 8, 9)], 5)
    '[(5, 25, 30)]'
    >>> find_tuples([(7, 9, 16), (8, 16, 4), (19, 17, 18)], 4)
    '[(8, 16, 4)]'
    """

Listing 3: SynonymSubstitution (6B CodeGen)
```

CharCase Change for Function Name. For function name perturbation, ReCode CharCase change is to randomly replace characters in function name to their upper cases. In Listing 4, “remove_dirty_chars” are replaced with “re-MOve_dIrty_cHarS”. With only four characters changed to their upper cases, 6B baseline model will fail under such
perturbation. Our model demonstrates better robustness performance.

```python
def remove_dirty_chars(string, second_string):
    
    Write a function to remove characters from the first string which are present in the second string.
    
    >>> remove_dirty_chars("probasscurve", "pros")
    'bacuve'
    >>> remove_dirty_chars("digitalindia", "talent")
    'digiidi'
    >>> remove_dirty_chars("exoticmiles", "toxic")
    'emles'
    
    # === completion by baseline model ===
    return string.replace(second_string, 
    
    # === completion by our model ===
    for char in second_string:
        if char in string:
            string = string.replace(char, 
    return string
```

Listing 4: CharCase change for function name (6B CodeGen)

D. Detailed Results for Ablations

Tables 6 and 7 shows detailed comparison among different approaches across four perturbation classes.

D.1. Different Designs of ALP

This section compares different designs of ALP. In terms of the KL divergence loss, two approaches are considered: (1) optimizing both original and perturbed token prefixes simultaneously, i.e., bringing their output distributions closer at the same time, denoted as Bo (both sides), and (2) optimizing only the perturbed token prefix, i.e., only bringing the output distribution of the perturbed token prefix closer to the original one, denoted as On (one side). Another aspect involves whether to optimize all prefixes or just the ones that are correctly predicted. The instance that optimizes all prefixes is named Al (all), while the one optimizing only correctly predicted prefixes is named Co (correct only). In summary, there are four different ALP designs (two by two). Lines [9]-[12] in Table 6 show that $On + Al$ achieves the best overall RP_{10}@1 among the four design. Therefore, we use this design throughout our experiments.

D.2. Different Designs of ALPD

This section compares three different designs of ALP. We conduct two additional experiments: (1) dropout of 10% arbitrary tokens, denoted as All, and (2) dropout of arbitrary tokens while following the same percentage as 10% of variable and function names, denoted as $AllS$ (all stratified). Comparing line [2] with lines [6] and [7] in Table 7, we observe that L_{ALPD} with 10% dropout on names achieves the best overall $NP@1$ and RP_{10}@1. Therefore, we use this design throughout our experiments.

D.3. Effectiveness of Combining Context-Free and Context-Sensitive Perturbations

Based on the ablation results, we choose to use $L_{MBA} + L_{ALP} + L_{ALPD}$ for all the models in Section 5.2. Our approach involves training on the combination of context-free and context-sensitive perturbations. Comparing the results of our combined approach on CodeGen-350M in Table 1 with those in Table 6 line [5] and in Table 7 line [2], we observe an improvement in model robustness. Specifically, our combined approach outperforms the other two approaches that focus solely on either context-free or context-sensitive perturbations in Docstring and Format.
Table 6: Ablation results of CodeGen-350M focusing on context-free perturbations, i.e., we apply \mathcal{L}_{DA} loss to the context-sensitive perturbations except for the baseline \mathcal{L}_{CLM}.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Docstring</th>
<th>Function</th>
<th>Syntax</th>
<th>Format</th>
<th>Overall Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[0] \mathcal{L}_{CLM}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[1] \mathcal{L}_{DA}$</td>
<td>18.10</td>
<td>6.19</td>
<td>18.10</td>
<td>6.47</td>
<td>29.24 1.46</td>
</tr>
<tr>
<td>$[2] \mathcal{L}_{MDA}$</td>
<td>17.57</td>
<td>8.12</td>
<td>17.57</td>
<td>7.91</td>
<td>29.96 9.31</td>
</tr>
<tr>
<td>$[3] \mathcal{L}_{MDA}(p = 0.2)$</td>
<td>17.91</td>
<td>7.36</td>
<td>17.91</td>
<td>7.84</td>
<td>31.30 8.88</td>
</tr>
<tr>
<td>$[4] \mathcal{L}_{MBA}$</td>
<td>18.24</td>
<td>7.17</td>
<td>18.24</td>
<td>8.21</td>
<td>31.56 10.02</td>
</tr>
<tr>
<td>$[5] \mathcal{L}{MBA} + \mathcal{L}{ALP}$</td>
<td>18.03</td>
<td>7.38</td>
<td>18.03</td>
<td>8.19</td>
<td>31.30 11.92</td>
</tr>
<tr>
<td>$[6] \mathcal{L}{MBA} + \mathcal{L}{CSeq}$</td>
<td>17.52</td>
<td>7.17</td>
<td>17.52</td>
<td>7.56</td>
<td>30.07 1.37</td>
</tr>
<tr>
<td>$[7] \mathcal{L}{MBA} + \mathcal{L}{ALP} + \mathcal{L}_{CTok}$</td>
<td>17.33</td>
<td>7.12</td>
<td>17.33</td>
<td>8.03</td>
<td>29.72 11.46</td>
</tr>
<tr>
<td>$[8] \mathcal{L}{MBA} + \mathcal{L}{CSeq}$</td>
<td>17.98</td>
<td>7.38</td>
<td>17.98</td>
<td>8.15</td>
<td>31.30 11.81</td>
</tr>
<tr>
<td>$[9] \mathcal{L}{MBA} + \mathcal{L}{ALP}(On + Co) + \mathcal{L}{CTok} + \mathcal{L}{CSeq}$</td>
<td>17.36</td>
<td>7.35</td>
<td>17.36</td>
<td>7.91</td>
<td>29.42 11.12</td>
</tr>
<tr>
<td>$[10] \mathcal{L}{MBA} + \mathcal{L}{ALP}(On + At) + \mathcal{L}{CTok} + \mathcal{L}{CSeq}$</td>
<td>17.31</td>
<td>7.33</td>
<td>17.31</td>
<td>7.80</td>
<td>29.77 11.48</td>
</tr>
<tr>
<td>$[11] \mathcal{L}{MBA} + \mathcal{L}{ALP}(Bo + Co) + \mathcal{L}{CTok} + \mathcal{L}{CSeq}$</td>
<td>16.87</td>
<td>7.19</td>
<td>16.87</td>
<td>7.72</td>
<td>29.40 11.07</td>
</tr>
<tr>
<td>$[12] \mathcal{L}{MBA} + \mathcal{L}{ALP}(Bo + At) + \mathcal{L}{CTok} + \mathcal{L}{CSeq}$</td>
<td>16.70</td>
<td>7.15</td>
<td>16.70</td>
<td>7.77</td>
<td>29.54 11.41</td>
</tr>
</tbody>
</table>

Table 7: Ablation results of CodeGen-350M focusing on context-sensitive perturbations, i.e., we apply \mathcal{L}_{DA} loss to the context-free perturbations except for the baseline \mathcal{L}_{CLM}.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Docstring</th>
<th>Function</th>
<th>Syntax</th>
<th>Format</th>
<th>Overall Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[0] \mathcal{L}_{CLM}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[1] \mathcal{L}_{MBA}$</td>
<td>18.10</td>
<td>6.19</td>
<td>18.10</td>
<td>6.47</td>
<td>29.24 1.46</td>
</tr>
<tr>
<td>$[2] \mathcal{L}{MBA} + \mathcal{L}{ALPD}$</td>
<td>18.80</td>
<td>8.44</td>
<td>18.80</td>
<td>8.37</td>
<td>30.84 8.00</td>
</tr>
<tr>
<td>$[3] \mathcal{L}{MBA} + \mathcal{L}{CName}$</td>
<td>18.65</td>
<td>8.14</td>
<td>18.65</td>
<td>8.49</td>
<td>30.54 7.94</td>
</tr>
<tr>
<td>$[4] \mathcal{L}{MBA} + \mathcal{L}{ALPD} + \mathcal{L}_{CName}$</td>
<td>18.63</td>
<td>8.12</td>
<td>18.63</td>
<td>8.26</td>
<td>30.69 7.82</td>
</tr>
<tr>
<td>$[5] \mathcal{L}{MBA} + \mathcal{L}{ALPD} + \mathcal{L}{CName} + \mathcal{L}{CTok}$</td>
<td>18.31</td>
<td>7.79</td>
<td>18.31</td>
<td>7.80</td>
<td>30.53 8.17</td>
</tr>
<tr>
<td>$[6] \mathcal{L}{MBA} + \mathcal{L}{ALPD}(AII)$</td>
<td>18.07</td>
<td>8.66</td>
<td>18.07</td>
<td>8.12</td>
<td>30.33 7.56</td>
</tr>
<tr>
<td>$[7] \mathcal{L}{MBA} + \mathcal{L}{ALPD}(All)$</td>
<td>18.37</td>
<td>8.12</td>
<td>18.37</td>
<td>8.73</td>
<td>30.51 7.49</td>
</tr>
</tbody>
</table>