
CodeFort: Robust Training for Code Generation Models

Yuhao Zhang * 1 Shiqi Wang 2 Haifeng Qian 2 Zijian Wang 2 Mingyue Shang 2 Linbo Liu 2

Sanjay Krishna Gouda 2 Baishakhi Ray 2 Murali Krishna Ramanathan 2 Xiaofei Ma 2 Anoop Deoras 2

Abstract
Code generation models are not robust to small
perturbations, which often lead to inconsistent and
incorrect generations and significantly degrade
the performance of these models. Improving the
robustness of code generation models is crucial
to better user experience when these models are
deployed in real-world applications. However,
existing efforts have not addressed this issue for
code generation models. To fill this gap, we pro-
pose CodeFort, a framework to improve the ro-
bustness of code generation models, generalizing
a large variety of code perturbations to enrich the
training data and enabling various robust train-
ing strategies, mixing data augmentation, batch
augmentation, adversarial logits pairing, and con-
trastive learning, all carefully designed to support
high-throughput training. Extensive evaluations
show that we improve the average robust pass
rates of baseline CodeGen models from 14.79 to
21.74. Notably, the improvement in robustness
against code-syntax perturbations is evidenced
by a significant decrease in pass rate drop from
95.04% to 53.35%.

1. Introduction
Code generation models (Li et al., 2023; Nijkamp et al.,
2023b;a; Fried et al., 2023; Luo et al., 2023; Rozière et al.,
2023) have demonstrated impressive performance in gener-
ating code from natural language descriptions, completing
sections of code, and even tackling complex coding contest
challenges. These models have the potential to offer assis-
tance to software engineers and increase their productivity.

However, code generation models are not robust to minor
perturbations in the input prompts (e.g., inserting whites-
paces/typos in docstrings or substituting variable names

*Work done while the author was at Amazon. 1Department
of Computer Science, University of Wisconsin-Madison,
Madison, USA 2AWS AI Labs. Correspondence to:
Yuhao Zhang <yuhaoz1997@gmail.com>, Shiqi Wang
<wshiqi@amazon.com>.

Figure 1: The performance drop of the state-of-the-art pub-
lic code models on four classes of code perturbations.

in code), i.e., they often generate inconsistent and incor-
rect outputs, thus significantly degrading their impressive
performance on nominal prompts and hurting user experi-
ence when deployed in real-world applications (Wang et al.,
2023b). Figure 1 shows that the performance of the state-of-
the-art (SOTA) public code models (Nijkamp et al., 2023b;
Li et al., 2023; Luo et al., 2023) significantly declines under
semantic-preserving program transformations, particularly
in the case of code-syntax perturbations. Thus, it is neces-
sary to improve the robustness of models before they can be
universally adopted and deployed.

Despite extensive research efforts to improve the robustness
of code-related tasks, beyond code generation, such as vul-
nerability prediction, clone detection, and code summariza-
tion, existing work has not tackled two unique challenges
of improving the robustness of code generation models,
primarily trained using casual language modeling (CLM).

Challenge 1: Distinct Robustness Definition Unlike
traditional classification tasks like vulnerability detection,
where models produce a single classification, code gener-
ation models generate sequences, leading to a shift in the
definition of robustness for certain perturbations. In code
generation, model robustness is defined by generating a co-
herent output given an input perturbation. In contrast, in
classification tasks, models are expected to maintain the
same classification before and after perturbation. For in-
stance, if a variable i is renamed to b in the input prompt
(as illustrated in Figure 2b), a robust code generation model

1

CodeFort: Robust Training for Code Generation Models

should generate completions with the variable b rather than
maintain the original name i. This distinction necessitates
defining a new category of perturbations for code genera-
tion models and designing corresponding robust training
approaches to tackle this new category.

Challenge 2: Designing Robust Training Approaches
As code perturbations can insert dead code or typos into
training data, directly training using data augmentation
could adversely affect the model performance, leading to
issues like generating dead code or typos. Furthermore,
applying more deliberate robust training approaches such
as adversarial logits pairing (ALP) (Kannan et al., 2018)
and contrastive learning (CL) to CLM presents unique chal-
lenges. ALP, designed for single-class classification, re-
quires careful alignment between original and perturbed
sequences, complicated by potential differences in sequence
lengths. Although CL has demonstrated efficacy in im-
proving the robustness of code representations in masked
language modeling (MLM) (Devlin et al., 2019), its ap-
plicability to improving the robustness of code generation
models remains unexplored. Directly applying the CL ob-
jective (ContraSeq) from ContraBERT (Liu et al., 2023) and
ContraCode (Jain et al., 2021) on sequence representations
may not cater to CLM, which involves discriminating rep-
resentations at a finer level and goes beyond just sequence
representations. Notably, this adoption shows negligible ro-
bustness improvement on CLM code models (Section 5.3).
Thus, designing CL objectives tailored to finer granularities
is imperative.

To tackle the above two challenges and improve the robust-
ness of code generation models, we introduce a structured
definition of code perturbations (Section 3) and design a
novel framework named CodeFort (Section 4). CodeFort
generalizes various code perturbations to enrich the training
data and enables robust training with different approaches.

To address Challenge 1, we classify existing code perturba-
tions into two categories: context-free and context-sensitive,
based on the formal definition of code perturbations pro-
vided in Section 3. Context-free perturbations, such as the
docstring perturbation in Figure 2b, follow the traditional no-
tions of robustness, whereas context-sensitive perturbations,
such as the code-syntax perturbation in Figure 2d, specific
the distinct robustness definition highlighted in Challenge 1.
The distinction of these two categories allows CodeFort
to employ different robust training methods according to
each category. Moreover, we propose two novel approaches
tailored to context-sensitive robustness: ALP with name-
Dropout (ALPD) and name-level CL (ContraName).

To address Challenge 2, CodeFort employs example-level
and sequence-level pairing to enrich the training set. These
two pairing levels allow 1) a masking mechanism to mask

unnatural perturbed tokens and 2) a careful alignment be-
tween the original and perturbed token sequences, address-
ing the crucial challenge of applying data augmentation
and ALP to CLM. Additionally, we propose a novel token-
level CL (ContraToken) inspired by Jain et al. (2023). Con-
traName and ContraToken empower CLM to discriminate
finer-grained representations.

We utilize CodeFort to extensively evaluate various strate-
gies, mixing data augmentation, batch augmentation, ALP,
and CL. Our best approach mixing batch augmentation with
the masking mechanism, ALP, and ALPD significantly en-
hances the model robustness, surpassing the sub-optimal
results achieved by data augmentation. Notably, the pass
rate drop due to code-syntax perturbations is improved from
95.04% to 53.35%. Our ablation studies show that Con-
traSeq, the CL objective used in previous work for MLM,
has negligible robustness improvements on CLM.

We summarize our contributions: 1) a framework, CodeFort,
for improving the robustness of code generation models
trained by CLM, addressing the unique challenges of dis-
tinct robustness definition and designing robust training
approaches, 2) designs of robust training approaches, ALP,
ALPD, ContraToken, and ContraName tailored to CLM,
3) an extensive evaluation of different robust training ap-
proaches, and 4) a surprising finding that the ContraSeq
CL objective, which is known to be beneficial for improv-
ing robustness of other code related tasks, has negligible
robustness improvements on CLM.

2. Related Work

Adversarial Attacks on Code-Related Tasks Numer-
ous adversarial attacks (Henkel et al., 2022; Zhang et al.,
2020; Yefet et al., 2020; Jha & Reddy, 2023; Srikant et al.,
2021; Anand et al., 2021; Gao et al., 2023) have targeted
encoder-decoder models in code-related tasks, including
classification (e.g., vulnerability prediction, clone detection)
and generation (e.g., code summarization, comment gen-
eration). Key methods include CODA (Tian et al., 2023),
which exploits syntactic differences for adversarial example
generation; CARROT (Zhang et al., 2022), employing a
lightweight hill climbing for optimization in attacks; and
ALERT (Yang et al., 2022), which creates naturalness-aware
attacks using pre-trained models. Unlike these approaches,
we focus on improving the robustness of code generation
models trained using casual language modeling. We assess
our approaches’ effectiveness in code generation through
ReCode (Wang et al., 2023b), a benchmark for evaluating ro-
bustness via semantic-preserving program transformations.

Robust Training on Code-Related Tasks Adversarial
attacks typically enhance model robustness through data

2

CodeFort: Robust Training for Code Generation Models

def largest_divisor(n: int) -> int:
""" For a given number n, find the largest number that

↪→divides n evenly, smaller than n
>>> largest_divisor(15)
5
"""

===
for i in reversed(range(n)):

if n % i == 0:
return i

(a) An original problem in HumanEval. === separates the
prompt and the ground-truth completion.

def largestDivisor(n: int) -> int:
""" For a given number n, find the largest number that

↪→separate n evenly, modest than n
>>> largestDivisor(15)
5
"""

===
for i in reversed(range(n)):

if n % i == 0:
return i

(b) A perturbed version of Figure 2a by a function-name and
docstring perturbation.

def largest_divisor(n: int) -> int:
""" For a given number n, find the largest number that

↪→divides n evenly, smaller than n
>>> largest_divisor(15)
5
"""
for i in reversed(range(n)):

===
if n % i == 0:

return i

(c) A HumanEval problem includes the first half of the original
completion.

def largest_divisor(n: int) -> int:
""" For a given number n, find the largest number that

↪→divides n evenly, smaller than n
>>> largest_divisor(15)
5
"""
for b \

in reversed(range(n)):
===

if n % b == 0:
return b

(d) A perturbed version of Figure 2c by a code-syntax and
code-format perturbation.

Figure 2: HumanEval problems under different code perturbations. To achieve a more compact illustration, we merge two
code perturbations in one example.

augmentation and adversarial training (Madry et al., 2018).
Bielik & Vechev (2020) refine model representations by
feeding only pertinent program parts to the model; Suneja
et al. (2023) use curriculum learning and data augmentation
with simplified programs. They all tend to improve robust-
ness in classification tasks. Unlike these, our focus is on
code generation robustness.

While Zhou et al. (2022) propose random input token mask-
ing to lessen dependence on non-robust features, our method
selectively masks perturbed tokens during loss calculation to
avoid the model generating unnatural perturbations. In con-
trast to ContraCode (Jain et al., 2021) and ContraBERT (Liu
et al., 2023), which apply contrastive learning to classifi-
cation and code translation tasks by improving robustness
in masked language modeling, we focus on the efficacy of
contrastive learning in decoder-only code generation mod-
els. Although ContraCLM (Jain et al., 2023) enhances the
discrimination of CLM’s representations, it does not specifi-
cally target robustness improvement.

3. Problem Definition
We address the robustness challenge in a code genera-
tion model f trained using Causal Language Modeling
(CLM). CLM predicts the next token in a sequence, and
the model can only attend to tokens on the left. Formally,
given a sequence of tokens x = x1, . . . , xn, the genera-
tion model f captures pf (· | x:i), representing the con-
ditional probabilities of the i-th token given the preced-
ing tokens x:i = x1, . . . , xi−1. The model is trained on a
dataset D = {xj}mj=1 using cross-entropy loss LCLM(x) =

−
∑n

i=1 log pf (xi | x:i). The generation model f deter-

mines the most likely next token x̂i by selecting the token
with the highest probability in pf (· | x:i) from the entire
vocabulary V , x̂i = argmaxv∈V pf (v | x:i).

Utilizing a given decoding strategy, such as greedy or tem-
perature sampling (Holtzman et al., 2020), the generation
model f produces a sequence of tokens by iteratively pre-
dicting the next tokens until a specified stop criterion is
reached. We denote f(x:i) = x̂i: as the generated token
sequence by f . The terms prompt, completion, and ground
truth refer to the input x:i, the output x̂i:, and the original
completion xi: = xi, . . . , xn, respectively.

In code generation, the token sequence x represents a code
snippet. Figure 2a shows a problem in HumanEval (Chen
et al., 2021). Each prompt x:i in a problem contains a func-
tion signature and a corresponding docstring description,
and each ground-truth completion xi: is the correct func-
tion implementation. A code generation model f is asked
to generate a completion, denoted as x̂i:. If the completed
function x:i+x̂i: passes all the hidden test cases, the genera-
tion x̂i: is deemed correct, denoted as Cor(x:i+ x̂i:) = true.
Otherwise, if any of the tests fail, Cor(x:i + x̂i:) = false.

3.1. Code Perturbations

ReCode (Wang et al., 2023b) is a comprehensive robust-
ness evaluation benchmark for code generation models con-
taining semantic-preserving code perturbations across four
classes: docstring, function-name, code-syntax, and code-
format perturbations. We present examples from these four
classes and we encourage readers to refer to the original
paper for more detailed descriptions.

3

CodeFort: Robust Training for Code Generation Models

Docstring Perturbations rewrite natural language in doc-
strings and comments, including edits like adding typos
and substituting synonyms (See Figure 2b). Function-Name
Perturbations refactor some function names, e.g., chang-
ing from snake case to camelCase and adding typos (See
Figure 2b). Code-Syntax Perturbations apply perturbations
related to code syntax, involving changes such as inserting
deadcode and renaming variables (See Figure 2d). Code-
Format Perturbations change the code snippets’ format, e.g.,
adding newlines and splitting a line into two (See Figure 2d).

We define a code perturbation, denoted by π =
{T1, T2, . . .}, as a collection of string transformations. Each
transformation T : X 7→ X operates on a token sequence
from the input domain X , altering them to produce a per-
turbed sequence. Within π, each transformation specifies
different positions and replacements for perturbation.

Example 3.1. The VarRenamer perturbation, shown in Fig-
ure 2c, is a code perturbation π. It contains an infinite set of
string transformations that specify 1) which variable name
to change and 2) the new variable name. The former con-
tains two choices: n and i. And the latter contains infinite
choices of valid variable names.

We introduce two categories, context-free and context-
sensitive perturbations, which serve as a high-level inter-
face for generating perturbed datasets and facilitating robust
training. We formalize the distinctive characteristics of these
two categories in the following sections.

3.1.1. CONTEXT-FREE PERTURBATIONS

A code perturbation π is a context-free perturbation if all
perturbed prompts generated by π should not affect the
ground-truth completion. Formally, for all T ∈ π, the
concatenation of the prompt perturbed by T and the ground-
truth completion remains a correct function:

∀T ∈ π,Cor(T (x:i) + xi:) (1)

Example 3.2. In Figure 2b, the SynonymSubstitution per-
turbation in the docstring will not affect the ground-truth
completion.

3.1.2. CONTEXT-SENSITIVE PERTURBATIONS

A code perturbation π is a context-sensitive perturbation if
any perturbed prompt generated by π results in coherent
changes to the ground-truth completion. Formally, for all
T ∈ π, the concatenation of the prompt perturbed by T and
its ground-truth completion perturbed correspondingly is a
correct function, while the concatenation of the perturbed
prompt and the original ground-truth completion is not.

∀T ∈ π,Cor(T (x:i) + T (xi:)) ∧ ¬Cor(T (x:i) + xi:) (2)

Example 3.3. In Figure 2d, the VarRenamer perturbation

requires the ground-truth completion to change coherently
because all the variable i should be renamed to b.

3.2. Robustness of Code Generation Models

To define model robustness, we say a model f is robust to a
perturbation π, if

∀T ∈ π,Cor(T (x:i) + f(T (x:i))) (3)

Notice that the robustness against context-free perturbations
is similar to the traditional robustness definition, in which
the perturbation should not change the model results (Eq 1).
However, the robustness against context-sensitive perturba-
tions differs from the traditional robustness definition, as
the context-sensitive robustness requires the model output
to change coherently with the perturbed prompt (Eq 2).

4. CodeFort: A Robust Training Framework
CodeFort enhances the training set with a paired dataset
generation module, as detailed in Section 4.1. This process
involves tokenizing code snippets before and after perturba-
tions into pairs of original and perturbed token sequences,
thereby creating a paired dataset. Each token in the original
sequence is matched with its equivalent in the perturbed
sequence. Section 4.2 outlines our robust training strategies.

4.1. Paired Dataset Generation

The paired dataset generation method offers two types of
pairings: example-level and sequence-level. Example-level
pairing matches each original training example with its per-
turbed counterpart. Sequence-level pairing provides more
detail by matching each token segment from the original
example to its equivalent in the perturbed example. These
pairing mechanisms are essential for the robust training
strategies discussed in Section 4.2.

Example-level Pairing Given a training set D =
{xj}mj=1, where each training example is a code snippet,
the paired dataset generation module returns a set of paired
of training samples {(xj , x̃j)}, where x̃j is the code snippet
perturbed by some code perturbations. To obtain x̃j , we
first randomly choose t code perturbations {π1, . . . , πt} in
ReCode. Then, we randomly choose one string transforma-
tion from each code perturbation and apply it to the original
code snippet x,

x̃ = Tt(Tt−1(. . . T1(x) . . .)), Ti ∈ πi,∀1 ≤ i ≤ t. (4)

Sequence-level Pairing Given a pair of code snippets,
(x, x̃), the paired dataset generation module further provides
finer-granularity paring for this pair.

Example 4.1. Consider the following pair of tokens,

4

CodeFort: Robust Training for Code Generation Models

Index: 0 1 2 3 4 5 6 7 8 9
Original: A C D E F G H C I
Perturbed: A B X D E F Y X Z Z

In this example, the code perturbations perform two context-
free perturbations, insert “B” and substitute “G H” with

“Y”, and two context-sensitive perturbations, substitute all
“C” with “X” and substitute all “I” with “Z Z”.

To create sequence-level pairing, we introduce a mask se-
quence m (m̃) for the original sequence x (and the per-
turbed sequence x̃, respectively). Each mask value indicates
which kind of perturbation is applied to the correspond-
ing token, U for unperturbed, F for context-free, and S for
context-sensitive.

Example 4.2. We show the two masks of Example 4.1.

Index: 0 1 2 3 4 5 6 7 8 9
Original Mask: U S U U U F F S S
Perturbed Mask: U F S U U U F S S S

This two-level pairing design is the key to enabling some
of the robust training approaches, which will be introduced
subsequently.

4.2. Designing Robust Training Approaches

This section introduces four lightweight robust training ap-
proaches: data augmentation, batch augmentation, adver-
sarial logits pairing, and contrastive learning, all carefully
designed to tailor to CLM training.

4.2.1. DATA AUGMENTATION

Data augmentation is a widely used approach to improve the
robustness of machine learning models. A common practice
is replacing a certain portion, denoted as p, of the original
training examples with their perturbed counterparts in each
training batch. Formally, for a training batch {xj}bj=1 and
its paired perturbed batch {x̃j}bj=1, the objective function
for data augmentation is expressed as follows,

LDA =

b∑
j=1

ajLCLM(x̃j) + (1− aj)LCLM(xj), (5)

where aj
i.i.d∼ Bernoulli(p) is a Bernoulli variable indicating

whether the j-th training example will be perturbed or not.

Masking Unnatural Perturbed Tokens Some context-
free perturbations introduce unnatural tokens, such as Dead-
Code Insertion adding an artificial code segment and But-
terFingers introducing typos. Referring back to the robust-
ness property in Eq 3, our goal is for the model to learn to
respond to these perturbations rather than to generate them.

Learning to generate these unnatural perturbed tokens could
adversely affect the original model performance, leading
to issues like generating dead code or typos. We propose
masking the CLM loss of these unnatural perturbed tokens
to address these issues. We define the CLM loss for the
example x after masking out the unnatural perturbed tokens

LCLM(x,m) = −
|x|∑
i=1

1{mi ̸=F} log pf (xi | x:i),

where mi ̸= F means that the i-th token is not perturbed by
a context-free perturbation (see Example 4.2). We design
the masked data augmentation loss LMDA by replacing the
term LCLM(x̃) in Eq 5 with the masked loss LCLM(x̃,m).

4.2.2. BATCH AUGMENTATION

Batch augmentation (Hoffer et al., 2019) duplicates a portion
of training examples within the same batch with different
perturbations. It differs slightly from data augmentation,
where a batch contains p perturbed and 1− p original data.
In batch augmentation, the entire batch is augmented with
p perturbed rather than replacing p original data with per-
turbed data as in data augmentation. Given a training batch
and its paired perturbed batch, the objective function of
batch augmentation is defined as follows,

LMBA =

b∑
j=1

ajLCLM(x̃j , m̃j) + LCLM(xj)

Note that we apply the masking mechanism to batch aug-
mentation as well. When batch augmentation was originally
proposed, its primary goal was not to improve the robust-
ness of the model. However, we hypothesize that it can
further improve the robustness over data augmentation, as
indicated in some multilingual cases (Ahmed & Devanbu,
2022; Wang et al., 2023a).

4.2.3. ADVERSARIAL LOGITS PAIRING

Adversarial Logits Pairing (ALP) (Kannan et al., 2018) im-
proves the robustness of classification models by minimiz-
ing the KL divergence between the original input’s predic-
tion distribution and the perturbed input’s prediction distri-
bution. However, adapting ALP from classification models
to generation models trained by CLM is challenging. One
straightforward approach is decomposing the generation
task into multiple next-token prediction tasks. However, the
original and the perturbed token sequences can have differ-
ent lengths due to some transformations adding or removing
tokens. This length discrepancy prevents a direct match of
each token’s prediction between the two sequences.

To address this challenge, we leverage the sequence-level
pairing provided by our paired dataset generation module.

5

CodeFort: Robust Training for Code Generation Models

We apply ALP only to the unperturbed segments of the two
sequences, marked by U in Example 4.2. All unperturbed
segments have the same length, allowing us to apply ALP to
the predictions of these unperturbed tokens. We use u and
ũ to denote the ordered indices for all unperturbed tokens
in the original and perturbed sequences. The ALP objective
is defined as follows,

LALP =

b∑
j=1

|uj |∑
i=1

DKL

(
pf (· | x̃j

:ũj
i

) ∥ pf (· | xj

:uj
i

)
)

Example 4.3. In Example 4.1, u = (0, 2, 3, 4) and ũ =
(0, 3, 4, 5).

ALP with name-Dropout (ALPD) We design another
ALP approach specifically tailored to variable and function
rename transformations among context-sensitive perturba-
tions. We propose to reduce the model’s reliance on specific
variable and function names by setting the attention masks
of a portion of these names to zero. ALPD can be seen as a
dropout mechanism specific to entity names. We use Dp(x)
to denote the input sequence after name-specific dropout.

LALPD =

b∑
j=1

|uj |∑
i=1

DKL

(
pf (· | Dp(xj)

:u
j
i
) ∥ pf (· | xj

:u
j
i

)

)

+DKL

(
pf (· | Dp(x̃j)

:ũ
j
i
) ∥ pf (· | x̃j

:ũ
j
i

)

)
LALPD sums two KL divergence losses: the first over the
original sequence after and before dropout, and the second
over the perturbed sequence.

4.2.4. CONTRASTIVE LEARNING

Contrastive learning (CL) maximizes the cosine similarity
between positive (similar) pairs and minimizes the distance
between negative (dissimilar) pairs. The granularity of pairs
leads to different designs of CL objectives. This section
introduces three designs of CL objectives tailored to CLM.
ContraSeq and ContraToken objectives, inspired by Contr-
aCLM (Jain et al., 2023), focus on the levels of sequences
and tokens. A novel ContraName objective focuses on the
level of variable and function names.

ContraSeq The ContraSeq objective operates at the se-
quence level, where each pair consists of summarizations
of two input sequences. We note that this setting is also
adopted in ContraBERT (Liu et al., 2023) and Contra-
Code (Jain et al., 2021) for improving the robustness of
the encoder model trained on masked language modeling
(MLM). Since CLM does not have the [CLS] token used in
MLM, we compute the average of the hidden states in the
last layer as the summarization.

Given a batch B = {h1, . . . ,hb, h̃1, . . . , h̃b} with 2b sum-
marizations of original and perturbed sequences, ContraSeq
treats the b corresponding original and perturb pairs as posi-
tive pairs and other pairs in the batch as negatives. Denoting
the temperature hyper-parameter as τ and cosine similarity
as ⋄, we define the ContraSeq objective as follows,

LCSeq =

b∑
j=1

g(hj , h̃j , B) + g(h̃j ,hj , B),

where g(x, y,B) is defined as

g(x, y,B) = − log
exp(x ⋄ y/τ)∑

h∈B exp(x ⋄ h/τ)− exp(1/τ)
.

ContraSeq represents the coarsest granularity among the
three objectives. While ContraSeq is shown to be effec-
tive for the goal of MLM by ContraBERT and ContraCode,
it may not fully cater to CLM’s objective, which involves
discriminating representations at a finer level, beyond just
sequence representations, to predict the next token in each
prefix. Additionally, ContraSeq poses scalability challenges,
as it demands a large batch size to compute a meaningful In-
foNCE loss. This challenge restricts ContraSeq’s feasibility
to large language models.

ContraToken The ContraToken objective operates at the
token level, providing a much finer granularity than Con-
traSeq. ContraToken aims to discriminate the representation
of each prefix. However, as we mentioned in Section 4.2.3,
directly treating x:i and x̃:i as a positive pair does not work
due to the potential sequence length difference between orig-
inal and perturbed sequences. To address this, ContraToken
considers two prefixes ending at the same unperturbed to-
ken as a positive pair, with other prefix pairs designated
as negatives. For the j-th training example, let hj

i denote
the representation of the prefix up to the i-th token, and uj

i

denote the index of the i-th unperturbed token. We define
ContraToken objective as:

LCTok =

b∑
j=1

|uj |∑
i=1

g(hj

uj
i

, h̃j

ũj
i

, Hj) + g(h̃j

ũj
i

,hj

uj
i

, Hj)

where Hj contains all the representations of prefixes ending
at unperturbed tokens for the j-th training example, i.e.,
Hj = {hj

uj
1

, . . . ,hj

uj

|uj |

, h̃j

ũj
1

, . . . , h̃j

ũj

|ũj |

}.

ContraName To address variable and function rename
transformations in context-sensitive perturbations, we de-
sign a novel name-level CL objective, ContraName. This
objective aims to enhance the discrimination of representa-
tions for different variable and function names.

6

CodeFort: Robust Training for Code Generation Models

In ContraName, we group representations of variables or
functions according to their names. For a name spanning
multiple tokens, we use the average of these tokens as its
representation. ContraName treats representations within
the same group as positive pairs and those across different
groups as negative pairs. Notice that the negative pairs in
ContraName have explicit semantic differences, i.e., differ-
ent names should yield different representations. This ex-
plicit semantic difference of negative pairs has been shown
to improve the effectiveness of CL (Ding et al., 2023).

Suppose in the sequence x, we identify g groups of name
representations G1, G2, . . . , Gg, with G =

⋃g
i=1 Gi being

their union. We define the ContraName objective on the
input x as follows,

LCName(x) = − log

(∑g
i=1

∑
h,h′∈Gi

exp(h ⋄ h′/τ)∑
h,h′∈G exp(h ⋄ h′/τ)

)

Example 4.4. Consider the original example in Example 4.1
with G1 = {h1,h7} and G2 = {h8}. The perturbed exam-
ple contains G̃1 = {h̃2, h̃7} and G̃2 = { h̃8+h̃9

2 }.

The final ContraName objective is the sum of losses over
the original sequences and their perturbed counterparts.

LCName =

m∑
j=1

LCName(x
j) + LCName(x̃

j) (6)

5. Evaluation
5.1. General Experimental Setup

Models We use different robust training approaches to
fine-tune different sizes of mono-lingual CodeGen mod-
els (Nijkamp et al., 2023b): CodeGen-6B, CodeGen-2B,
and CodeGen-350M. We provide fine-tuning settings in
Appendix A.

Datasets and Benchmarks We use the stack dataset
(v1.2) (Kocetkov et al., 2022) as our raw training dataset D.
Our dataset generation module uses ReCode (Wang et al.,
2023b) to augment the dataset by introducing different code
perturbations as D̃. We set t = 2 in Eq 4, i.e., we apply at
most two code perturbations to each original code snippet.
We set p = 25% for all robust training approaches.

To evaluate the robustness, we use the ReCode benchmark,
which is based on HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021). The docstring and function-
name classes in ReCode are perturbed based on the original
prompt. The code-syntax and code-format classes are per-
turbed based on a modified version, where each prompt is
appended with half of the ground truth completion.

Metrics We use the following three metrics to assess the
nominal and robustness performance of models.

NP@1. We use Pass@k following Chen et al. (2021) to
assess the nominal code generation performance. To sepa-
rate from the Pass@k used for robustness metrics, we name
the Pass@k on unperturbed data to be Nominal Pass@k
(NP@k). This metric approximates the probability of any
k samples passes all the test case, if we randomly choose k
samples out of n samples generated by the model for each
problem. We use n = 5 due to computational constraints.
Additionally, as demonstrated in the Recode paper (Wang
et al., 2023b), the difference between n = 10 and n = 100
is already small.

RP10@1. To evaluate the robustness of models, we use
the same metric introduced in ReCode, the Robust Passs@k
(RPs@k). It measures the worst-case Pass@k on s perturbed
variance for each perturbation type and each sample. Here,
we use s = 10 to harden the robustness gain for training
and differentiate performance gaps.

Drop%. Following ReCode, we also report Robust Drop%.
It measures the percentage drop from Robustness Pass@k
(RPs@k) from Nominal Pass@k (NP@k), indicating the rel-
ative robustness changes given perturbations. Lower Drop%
means better robustness.

5.2. Effectiveness of Proposed Approaches

Summary of the Results Our approach significantly
enhances the robustness of code generation models, sur-
passing the results of data augmentation. Notably, our
approach exhibits the most substantial improvement in
robustness against Syntax perturbations, achieving a re-
markable 17.83 RP10@1 enhancement.

Table 1 summarizes the robust evaluation results for Code-
Gen models. We use LCLM to denote the baseline method
that fine-tunes on the stack dataset (unseen by CodeGen
models) without any robust training approaches. Compar-
ing LCLM and the original model (Ori) of CodeGen, we
find that fine-tuning on unseen data can already improve
model robustness on the Docstring, Function, and Format
perturbations, except the Syntax perturbation.

When averaging across four perturbation classes, our ap-
proach demonstrates significant improvements in RP10@1
—9.37, 6.49, and 4.99 for CodeGen-6B, CodeGen-2B, and
CodeGen-350M, respectively, compared to the baseline
LCLM. In contrast, data augmentation achieves sub-optimal
results with improvements of 7.87, 6.24, and 3.43.

Averaging over all three models, our approach enhances
RP10@1 by 3.29, 0.88, 17.94, and 5.68 for Docstring, Func-
tion, Syntax, and Format perturbations, respectively, com-
pared to the baseline LCLM. Surprisingly, our approach

7

CodeFort: Robust Training for Code Generation Models

Table 1: Robust evaluation of CodeGen-6B, CodeGen-2B, and CodeGen-350M on a union of HumanEval and MBPP
datasets. Our best approach uses the setting LMBA + LALP + LALPD. We show the statistical significance between our
approach and LDA using the paired-t test with ∗ denoting p < 0.05 and ∗∗ denoting p < 0.01. NP@1 and RP10@1 are
higher the better. Drop% is lower the better.

Model & Methods Docstring Function Syntax Format Overall Average

NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 Drop%

CodeGen-6B

Ori 35.96 12.83 35.96 14.36 52.72 2.20 52.72 25.47 44.34 13.71 69.08
LCLM 40.07 20.21 40.07 22.18 54.91 2.58 54.91 35.80 47.27 20.19 57.29
LDA 37.61 20.51 37.61 21.88 52.99 27.66 52.99 42.18 45.30 28.06 38.06
Ours 37.91 ∗∗23.13 37.91 22.53 53.16 27.70 53.16 ∗∗44.87 45.54 29.56 35.09

CodeGen-2B

Ori 31.27 11.04 31.27 9.75 44.82 1.63 44.82 24.45 38.05 11.72 69.20
LCLM 32.99 15.78 32.99 16.41 46.22 2.43 46.22 32.00 39.61 16.66 57.94
LDA 31.62 17.62 31.62 16.61 45.96 ∗22.86 45.96 34.50 38.79 22.90 40.96
Ours 31.56 ∗∗19.21 31.56 17.12 45.04 21.92 45.04 34.36 38.30 23.15 39.56

CodeGen-350M

Ori 17.10 3.57 17.10 3.06 26.75 1.11 26.75 9.54 21.93 4.32 80.30
LCLM 18.10 6.19 18.10 6.47 29.24 1.46 29.24 15.96 23.67 7.52 68.23
LDA 18.10 7.45 18.10 7.94 30.11 8.59 30.11 18.58 24.10 10.64 55.85
Ours 18.33 ∗∗9.72 18.33 8.05 31.04 ∗∗10.67 31.04 ∗∗21.58 24.69 12.51 49.33

exhibits the most substantial improvement in robustness
against Syntax perturbations. This emphasis on strengthen-
ing robustness to Syntax perturbations is crucial for ensuring
the reliability of code models in handling diverse syntactic
variations.

We conducted statistical analyses using paired-t tests to com-
pare our approach with baseline LCLM and data augmen-
tation LDA across four perturbation classes. Our approach
significantly outperforms the baseline LCLM with p < 0.05
on all perturbation classes and all models with exceptions of
function-name perturbations on CodeGen-6B and CodeGen-
2B. We hypothesize that the less pronounced results on
function-name perturbations are due to the imbalanced per-
turbed data, as the percentages of function-name perturba-
tions are much smaller compared to other perturbation types.
When comparing our approach with data augmentation LDA

(shown in Table 1), we found that our approach significantly
outperforms LDA with p < 0.01 on six cases, while LDA

outperforms our approach with p < 0.05 on one case.

5.3. Ablation Studies

Summary of the Results The ablation studies confirm
the effectiveness of masked batch augmentation, ALP,
and ALPD. ContraSeq provides negligible improvements
compared to the baseline (LCLM). ContraToken and Con-
traName yield mixed results in different settings.

This section presents the ablation results of different ap-
proaches outlined in Section 4.2 applied to the CodeGen-
350M model. We conduct our experiments in two settings.
The first setting (Table 2) focuses on context-free perturba-
tions, applying the original data augmentation (LDA) loss
to context-sensitive perturbations while varying different
approaches for the context-free perturbations. In the second
setting (Table 3), we vary approaches for context-sensitive
perturbations while maintaining the LDA loss for context-

Table 2: Ablation results focusing on context-free perturba-
tions.

Methods Overall Average

NP@1 RP10@1 Drop%

[0] : LCLM 23.67 7.52 68.23
[1] : LDA 24.10 10.64 55.85
[2] : LMDA 23.77 11.10 53.30
[3] : LMDA(p = 20%) 24.60 10.48 57.40
[4] : LMBA 24.90 11.01 55.78
[5] : LMBA + LALP 24.67 11.48 53.47
[6] : LCLM + LCSeq 23.80 7.79 67.27
[7] : [5] + LCTok 23.52 11.18 52.47
[8] : [5] + LCSeq 24.64 11.51 53.29

Table 3: Ablation results focusing on context-sensitive per-
turbations.

Methods Overall Average

NP@1 RP10@1 Drop%

[0] : LCLM 23.67 7.52 68.23
[1] : LMBA 24.83 10.75 56.71
[2] : LMBA + LALPD 24.82 10.94 55.92
[3] : LMBA + LCName 24.60 10.87 55.81
[4] : [2] + LCName 24.66 10.80 56.20
[5] : [4] + LCTok 24.42 10.42 57.33

free perturbations. We report the overall average of NP@1,
RP10@1, and Drop% across four perturbation classes, with
more details reported in Appendix D.

Effectiveness on Masked Batch Augmentation The
masked batch augmentation loss LMBA consists of two com-
ponents: (1) a masking mechanism that masks unnatural
perturbed tokens and (2) batch augmentation. Comparing
the results of masked data augmentation (LMDA) and data
augmentation (LDA) in Table 2 validates the effectiveness
of the masking mechanism because LMDA achieves better
RP10@1 and Drop% than LDA. To assess the effective-

8

CodeFort: Robust Training for Code Generation Models

ness of batch augmentation, we cannot directly compare
the results of LMDA ([2], Table 2) and LMBA ([4], Table 2)
because LMDA is trained on p = 25% perturbed data, while
LMBA is trained on p

1+p = 20% perturbed data. For a fair
comparison, we train LDA with p = 20% perturbed data and
report the result at [3] in Table 2. Comparing the results of
LMDA(p = 20%) and LMBA confirms the effectiveness of
batch augmentation because LMBA achieves better NP@1,
RP10@1, and Drop% than LMDA(p = 20%).

Effectiveness of ALP and ALPD ALP and ALPD are
shown to be effective because LALP and LALPD both im-
prove the RP10@1 and Drop% ([5] vs [4] in Table 2 and [1]
vs [2] in Table 3). We further investigate different designs
of ALP and ALPD in Appendix D.

Discussion on Contrastive Learning Objectives Con-
traSeq only provides negligible improvements, as evidenced
by [6] vs [0], and [8] vs [5] in Table 2. ContraToken be-
haves differently in two ablation experiment settings. In
the context-free perturbation experiment (Table 2), Con-
traToken improves the Drop% but negatively impacts the
NP@1 and RP10@1 ([7] vs [5]). Conversely, in the context-
sensitive perturbation experiment (Table 3), ContraToken
hurts all metrics ([5] vs [4]). Adding ContraName to the
masked batch augmentation loss LMBA improves the Drop%
and RP10@1 ([3] vs [1]).

6. Conclusion, Limitations, and Future Work
Our framework, CodeFort, improves the robustness of code
generation models by generalizing a large variety of code
perturbations to enrich the training data and enabling various
robust training strategies. We foresee many future improve-
ments to this paper. First, ALPD and ContraName primarily
target function and variable rename perturbations but are not
general enough to handle arbitrary context-sensitive pertur-
bations. However, these approaches can be applied to name-
entities in general NLP tasks. Second, the robustness im-
provement of function-name perturbation on CodeGen-6B
and CodeGen-2B is insignificant compared to the baseline,
necessitating unique strategies to overcome this limitation.

7. Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ahmed, T. and Devanbu, P. T. Multilingual training for soft-

ware engineering. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pitts-
burgh, PA, USA, May 25-27, 2022, pp. 1443–1455. ACM,
2022. doi: 10.1145/3510003.3510049. URL https:
//doi.org/10.1145/3510003.3510049.

Anand, M., Kayal, P., and Singh, M. On adversar-
ial robustness of synthetic code generation. CoRR,
abs/2106.11629, 2021. URL https://arxiv.org/
abs/2106.11629.

Austin, J., Odena, A., Nye, M. I., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V.,
and Sutton, C. Program synthesis with large language
models. CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

Bielik, P. and Vechev, M. T. Adversarial robustness for
code. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Ma-
chine Learning Research, pp. 896–907. PMLR, 2020.
URL http://proceedings.mlr.press/v119/
bielik20a.html.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I.,
and Zaremba, W. Evaluating large language models
trained on code. CoRR, abs/2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference

9

https://doi.org/10.1145/3510003.3510049
https://doi.org/10.1145/3510003.3510049
https://arxiv.org/abs/2106.11629
https://arxiv.org/abs/2106.11629
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
http://proceedings.mlr.press/v119/bielik20a.html
http://proceedings.mlr.press/v119/bielik20a.html
https://arxiv.org/abs/2107.03374

CodeFort: Robust Training for Code Generation Models

of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–
4186. Association for Computational Linguistics, 2019.
doi: 10.18653/v1/n19-1423. URL https://doi.or
g/10.18653/v1/n19-1423.

Ding, Y., Chakraborty, S., Buratti, L., Pujar, S., Morari, A.,
Kaiser, G. E., and Ray, B. CONCORD: clone-aware con-
trastive learning for source code. In Just, R. and Fraser, G.
(eds.), Proceedings of the 32nd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, IS-
STA 2023, Seattle, WA, USA, July 17-21, 2023, pp. 26–38.
ACM, 2023. doi: 10.1145/3597926.3598035. URL ht
tps://doi.org/10.1145/3597926.3598035.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E.,
Shi, F., Zhong, R., Yih, S., Zettlemoyer, L., and Lewis,
M. Incoder: A generative model for code infilling and
synthesis. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=hQwb-lbM6EL.

Gao, F., Wang, Y., and Wang, K. Discrete adversarial attack
to models of code. Proc. ACM Program. Lang., 7(PLDI),
jun 2023. doi: 10.1145/3591227. URL https://doi.
org/10.1145/3591227.

Henkel, J., Ramakrishnan, G., Wang, Z., Albarghouthi,
A., Jha, S., and Reps, T. W. Semantic robustness of
models of source code. In IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering,
SANER 2022, Honolulu, HI, USA, March 15-18, 2022, pp.
526–537. IEEE, 2022. doi: 10.1109/SANER53432.2022.
00070. URL https://doi.org/10.1109/SANE
R53432.2022.00070.

Hoffer, E., Ben-Nun, T., Hubara, I., Giladi, N., Hoefler,
T., and Soudry, D. Augment your batch: better training
with larger batches. CoRR, abs/1901.09335, 2019. URL
http://arxiv.org/abs/1901.09335.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.
The curious case of neural text degeneration. In 8th
International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview
.net/forum?id=rygGQyrFvH.

Jain, N., Zhang, D., Ahmad, W. U., Wang, Z., Nan, F.,
Li, X., Tan, M., Nallapati, R., Ray, B., Bhatia, P., Ma,
X., and Xiang, B. Contraclm: Contrastive learning for
causal language model. In Rogers, A., Boyd-Graber,
J. L., and Okazaki, N. (eds.), Proceedings of the 61st
Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pp. 6436–6459. Association for
Computational Linguistics, 2023. URL https://ac
lanthology.org/2023.acl-long.355.

Jain, P., Jain, A., Zhang, T., Abbeel, P., Gonzalez, J., and Sto-
ica, I. Contrastive code representation learning. In Moens,
M., Huang, X., Specia, L., and Yih, S. W. (eds.), Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021, Virtual
Event / Punta Cana, Dominican Republic, 7-11 Novem-
ber, 2021, pp. 5954–5971. Association for Computational
Linguistics, 2021. doi: 10.18653/v1/2021.emnlp-mai
n.482. URL https://doi.org/10.18653/v1/
2021.emnlp-main.482.

Jha, A. and Reddy, C. K. Codeattack: Code-based ad-
versarial attacks for pre-trained programming language
models. In Williams, B., Chen, Y., and Neville, J.
(eds.), Thirty-Seventh AAAI Conference on Artificial In-
telligence, AAAI 2023, Thirty-Fifth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2023,
Thirteenth Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2023, Washington, DC, USA,
February 7-14, 2023, pp. 14892–14900. AAAI Press,
2023. URL https://ojs.aaai.org/index.p
hp/AAAI/article/view/26739.

Kannan, H., Kurakin, A., and Goodfellow, I. J. Adversarial
logit pairing. CoRR, abs/1803.06373, 2018. URL http:
//arxiv.org/abs/1803.06373.

Kocetkov, D., Li, R., Ben Allal, L., Li, J., Mou, C.,
Muñoz Ferrandis, C., Jernite, Y., Mitchell, M., Hughes,
S., Wolf, T., Bahdanau, D., von Werra, L., and de Vries,
H. The stack: 3 tb of permissively licensed source code.
Preprint, 2022.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov,
D., Mou, C., Marone, M., Akiki, C., Li, J., Chim, J.,
Liu, Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T.,
Dehaene, O., Davaadorj, M., Lamy-Poirier, J., Mon-
teiro, J., Shliazhko, O., Gontier, N., Meade, N., Ze-
baze, A., Yee, M., Umapathi, L. K., Zhu, J., Lipkin,
B., Oblokulov, M., Wang, Z., V, R. M., Stillerman,
J., Patel, S. S., Abulkhanov, D., Zocca, M., Dey, M.,
Zhang, Z., Moustafa-Fahmy, N., Bhattacharyya, U., Yu,
W., Singh, S., Luccioni, S., Villegas, P., Kunakov, M.,
Zhdanov, F., Romero, M., Lee, T., Timor, N., Ding,
J., Schlesinger, C., Schoelkopf, H., Ebert, J., Dao, T.,
Mishra, M., Gu, A., Robinson, J., Anderson, C. J., Dolan-
Gavitt, B., Contractor, D., Reddy, S., Fried, D., Bahdanau,
D., Jernite, Y., Ferrandis, C. M., Hughes, S., Wolf, T.,
Guha, A., von Werra, L., and de Vries, H. Starcoder:
may the source be with you! CoRR, abs/2305.06161,

10

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3597926.3598035
https://doi.org/10.1145/3597926.3598035
https://openreview.net/pdf?id=hQwb-lbM6EL
https://openreview.net/pdf?id=hQwb-lbM6EL
https://doi.org/10.1145/3591227
https://doi.org/10.1145/3591227
https://doi.org/10.1109/SANER53432.2022.00070
https://doi.org/10.1109/SANER53432.2022.00070
http://arxiv.org/abs/1901.09335
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://aclanthology.org/2023.acl-long.355
https://aclanthology.org/2023.acl-long.355
https://doi.org/10.18653/v1/2021.emnlp-main.482
https://doi.org/10.18653/v1/2021.emnlp-main.482
https://ojs.aaai.org/index.php/AAAI/article/view/26739
https://ojs.aaai.org/index.php/AAAI/article/view/26739
http://arxiv.org/abs/1803.06373
http://arxiv.org/abs/1803.06373

CodeFort: Robust Training for Code Generation Models

2023. doi: 10.48550/arXiv.2305.06161. URL https:
//doi.org/10.48550/arXiv.2305.06161.

Liu, S., Wu, B., Xie, X., Meng, G., and Liu, Y. Contra-
bert: Enhancing code pre-trained models via contrastive
learning. In 45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Melbourne, Aus-
tralia, May 14-20, 2023, pp. 2476–2487. IEEE, 2023. doi:
10.1109/ICSE48619.2023.00207. URL https://doi.
org/10.1109/ICSE48619.2023.00207.

Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao,
C., Ma, J., Lin, Q., and Jiang, D. Wizardcoder: Em-
powering code large language models with evol-instruct.
CoRR, abs/2306.08568, 2023. doi: 10.48550/ARXIV.
2306.08568. URL https://doi.org/10.48550/
arXiv.2306.08568.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018. URL https:
//openreview.net/forum?id=rJzIBfZAb.

Miller, G. A. WordNet: A lexical database for English.
In Speech and Natural Language: Proceedings of a
Workshop Held at Harriman, New York, February 23-
26, 1992, 1992. URL https://aclanthology.o
rg/H92-1116.

Nijkamp, E., Hayashi, H., Xiong, C., Savarese, S., and Zhou,
Y. Codegen2: Lessons for training llms on programming
and natural languages. ICLR, 2023a.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou,
Y., Savarese, S., and Xiong, C. Codegen: An open large
language model for code with multi-turn program synthe-
sis. ICLR, 2023b.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan,
X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., Kozhevnikov,
A., Evtimov, I., Bitton, J., Bhatt, M., Canton-Ferrer, C.,
Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar,
F., Touvron, H., Martin, L., Usunier, N., Scialom, T.,
and Synnaeve, G. Code llama: Open foundation models
for code. CoRR, abs/2308.12950, 2023. doi: 10.48550/
ARXIV.2308.12950. URL https://doi.org/10.
48550/arXiv.2308.12950.

Srikant, S., Liu, S., Mitrovska, T., Chang, S., Fan, Q., Zhang,
G., and O’Reilly, U. Generating adversarial computer
programs using optimized obfuscations. In 9th Interna-
tional Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL https://openreview.net
/forum?id=PH5PH9ZO_4.

Suneja, S., Zhuang, Y., Zheng, Y., Laredo, J., Morari, A.,
and Khurana, U. Incorporating signal awareness in source
code modeling: An application to vulnerability detection.
ACM Trans. Softw. Eng. Methodol., may 2023. ISSN
1049-331X. doi: 10.1145/3597202. URL https://do
i.org/10.1145/3597202. Just Accepted.

Tian, Z., Chen, J., and Jin, Z. Adversarial attacks on
neural models of code via code difference reduction.
CoRR, abs/2301.02412, 2023. doi: 10.48550/arXiv.2301.
02412. URL https://doi.org/10.48550/arXi
v.2301.02412.

Wang, D., Chen, B., Li, S., Luo, W., Peng, S., Dong, W.,
and Liao, X. One adapter for all programming lan-
guages? adapter tuning for code search and summa-
rization. In 45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Melbourne, Aus-
tralia, May 14-20, 2023, pp. 5–16. IEEE, 2023a. doi:
10.1109/ICSE48619.2023.00013. URL https://doi.
org/10.1109/ICSE48619.2023.00013.

Wang, S., Li, Z., Qian, H., Yang, C., Wang, Z., Shang, M.,
Kumar, V., Tan, S., Ray, B., Bhatia, P., Nallapati, R.,
Ramanathan, M. K., Roth, D., and Xiang, B. Recode:
Robustness evaluation of code generation models. In
Rogers, A., Boyd-Graber, J. L., and Okazaki, N. (eds.),
Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pp. 13818–13843. Association for Computational Lin-
guistics, 2023b. URL https://aclanthology.o
rg/2023.acl-long.773.

Yang, Z., Shi, J., He, J., and Lo, D. Natural attack for pre-
trained models of code. In 44th IEEE/ACM 44th Interna-
tional Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022, pp. 1482–1493.
ACM, 2022. doi: 10.1145/3510003.3510146. URL ht
tps://doi.org/10.1145/3510003.3510146.

Yefet, N., Alon, U., and Yahav, E. Adversarial exam-
ples for models of code. Proc. ACM Program. Lang.,
4(OOPSLA):162:1–162:30, 2020. doi: 10.1145/3428230.
URL https://doi.org/10.1145/3428230.

Zhang, H., Li, Z., Li, G., Ma, L., Liu, Y., and Jin, Z. Generat-
ing adversarial examples for holding robustness of source
code processing models. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pp. 1169–
1176. AAAI Press, 2020. URL https://ojs.aaai
.org/index.php/AAAI/article/view/5469.

11

https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.1109/ICSE48619.2023.00207
https://doi.org/10.1109/ICSE48619.2023.00207
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.48550/arXiv.2306.08568
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://aclanthology.org/H92-1116
https://aclanthology.org/H92-1116
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
https://openreview.net/forum?id=PH5PH9ZO_4
https://openreview.net/forum?id=PH5PH9ZO_4
https://doi.org/10.1145/3597202
https://doi.org/10.1145/3597202
https://doi.org/10.48550/arXiv.2301.02412
https://doi.org/10.48550/arXiv.2301.02412
https://doi.org/10.1109/ICSE48619.2023.00013
https://doi.org/10.1109/ICSE48619.2023.00013
https://aclanthology.org/2023.acl-long.773
https://aclanthology.org/2023.acl-long.773
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/3428230
https://ojs.aaai.org/index.php/AAAI/article/view/5469
https://ojs.aaai.org/index.php/AAAI/article/view/5469

CodeFort: Robust Training for Code Generation Models

Zhang, H., Fu, Z., Li, G., Ma, L., Zhao, Z., Yang, H.,
Sun, Y., Liu, Y., and Jin, Z. Towards robustness of deep
program processing models - detection, estimation, and
enhancement. ACM Trans. Softw. Eng. Methodol., 31(3):
50:1–50:40, 2022. doi: 10.1145/3511887. URL https:
//doi.org/10.1145/3511887.

Zhou, Y., Zhang, X., Shen, J., Han, T., Chen, T., and Gall,
H. C. Adversarial robustness of deep code comment
generation. ACM Trans. Softw. Eng. Methodol., 31(4):
60:1–60:30, 2022. doi: 10.1145/3501256. URL https:
//doi.org/10.1145/3501256.

Table 4: The ReCode (Wang et al., 2023b) robustness eval-
uation for SOTA public code models. NP@1 shows the
nominal pass@1 without perturbation; RP5@1 shows the
robust pass@1 under perturbation. The significant drop
of Drop% indicates unsatisfied robustness performance of
these models.

Transformation StarCoder WizardCoder CodeGen16B

Docstring
NP@1 41.27 53.29 39.23
RP5@1 11.60 20.43 15.81
Drop% 71.89 61.66 69.70

Function
NP@1 41.27 53.29 39.23
RP5@1 15.30 29.06 26.95
Robust% 62.93 45.47 31.30

Syntax
NP@1 59.34 61.09 56.78
RP5@1 4.21 9.86 5.54
Robust% 92.91 83.86 90.24

Format
NP@1 59.34 61.09 56.78
RP5@1 23.61 28.13 39.59
Robust% 60.21 53.95 30.27

A. Fine-tuning Settings
We train with p = 25% perturbed data as CodeGen models
has not been fine-tuned on the stack dataset. For CodeGen-
2B and CodeGen-6B, we set batch size to 256 and fine-tune
them for 10K and 5K steps, respectively, using the AdamW
optimizer and a linear schedule with 500 warmup steps and
a learning rate 2× 10−5. For CodeGen-350M, we set batch
size to 512 and fine-tune the model on half of the stack
dataset (about 266K steps) using the FusedAdam optimizer
and a linear schedule with 500 warmup steps and a learning
rate 2× 10−5.

We treat all the objective functions proposed in this paper
equally, i.e., summing them up without reweighing. For the
temperature hyperparameter τ in contrastive learning, we
set τ = 0.05 for all experiments following ContraCLM. We
set the dropout rate to 0.1 for LALPD.

B. Detailed Results for Each Perturbation
Type

Table 5 shows a detailed breakdown of robustness gain by
finetuning with our approach for each perturbation type
evaluated on 350M, 2B, and 6B CodeGen models.

C. Qualitative Examples
In this section, we present qualitative examples to demon-
strate the robustness improvements of our robust trained
models. On these MBPP examples, 6B CodeGen baseline
model fails to generate correct completions after applying
the perturbations. Our robust trained model, on the other
hand, can still successfully complete these problems. Here,
we list examples for the top four perturbation types that we
have achieved the most improvements (detailed numbers for

12

https://doi.org/10.1145/3511887
https://doi.org/10.1145/3511887
https://doi.org/10.1145/3501256
https://doi.org/10.1145/3501256

CodeFort: Robust Training for Code Generation Models

Table 5: Robustness evaluation for each category of perturbations on combined HumanEval and MBPP datasets. We
highlight in gray the top four perturbation types that we have achieved the most improvements over the baseline LCLM.

Categories Transformations CodeGen 350M CodeGen 2B CodeGen 6B
LCLM LDA Ours LCLM LDA Ours LCLM LDA Ours

Nominal Regular 18.10 18.10 18.33 32.99 31.62 31.56 40.07 37.61 37.91
Partial 29.24 30.11 31.04 46.22 45.96 45.04 54.46 52.99 53.16

Docstring

BackTranslation 17.35 17.66 17.79 31.6 29.86 30.53 38.91 36.75 37.45
EnglishInflectionalVariation 10.98 10.98 12.50 23.95 22.93 23.99 28.35 27.21 29.02
SynonymSubstitution 7.03 8.98 11.20 17.35 18.95 21.18 22.11 22.78 25.06
TenseTransformationFuture 17.49 17.72 18.33 32.07 31.34 31.35 39.79 37.38 37.63
TenseTransformationPast 18.12 18.51 18.63 32.55 31.21 31.55 39.40 37.28 37.70
WorstCase 6.19 7.45 9.72 15.78 17.07 19.21 20.21 20.51 23.13

Function

RenameButterFinger 11.56 11.79 11.90 23.88 23.15 23.34 29.86 28.95 28.82
RenameCamelCase 17.70 17.72 18.15 34.08 32.06 32.37 40.47 37.91 38.59
RenameChangeChar 8.54 10.39 10.33 20.14 20.91 20.88 27.03 26.63 26.84
RenameInflectionalVariation 14.11 14.76 15.20 28.56 27.87 28.19 33.36 32.48 33.66
RenameSwapChar 11.92 11.86 12.20 24.69 24.17 24.25 31.44 29.81 29.49
RenameSynonymSub 12.07 12.95 13.04 24.97 24.50 24.82 30.14 29.95 30.47
WorstCase 6.47 7.94 8.05 16.41 16.61 17.12 22.18 21.88 22.53

Syntax

DeadCodeInsertion 1.92 15.83 20.77 3.87 33.25 32.93 3.32 38.86 41.16
DeadCodeInsertionLast 9.24 31.55 32.69 13.90 48.26 49.47 14.39 55.13 55.15
ForWhileTransformer 27.08 26.99 29.16 43.78 42.76 41.90 50.35 50.49 50.81
OperandSwap 27.80 26.91 29.12 44.50 43.32 43.15 51.53 51.46 51.60
VarRenamerCB 26.52 25.85 27.72 44.60 42.85 42.04 49.12 48.17 49.35
VarRenamerNaive 24.99 26.31 26.22 42.53 41.20 41.09 49.28 49.05 48.14
VarRenamerRN 14.75 15.41 15.78 31.65 31.48 30.56 37.07 37.07 36.03
WorstCase 1.46 8.59 10.67 2.43 22.86 21.92 2.58 27.66 27.70

Format

Doc2Comments 25.48 27.66 28.75 45.36 44.29 42.67 50.28 51.27 51.30
NewLineInsertion 20.44 22.32 25.54 35.52 37.86 37.91 39.74 46.19 48.58
SplitLine 27.07 28.42 30.04 44.60 45.18 43.44 52.07 52.16 51.83
WorstCase 15.96 18.58 21.58 32.00 34.50 34.36 35.80 42.18 44.87

13

CodeFort: Robust Training for Code Generation Models

each perturbation type can be found in Table 5).

DeadCode Insertion. For this perturbation type, ReCode
perturbation will insert a redundant code block including an
if condition, a for loop, or a while loop. The
models will usually be distracted by the inserted blocks,
causing failure of completions. Here, in Listing 1, ReCode
perturbation inserts a redundant if condition block
at line 12-13. Even though the semantic meaning barely
changes after this insertion, the 6B baseline model fails to
generate the correct answer.

1 def test_distinct(data):
2 """
3 Write a python function to determine

whether all the numbers are
different from each other are not.

4 >>> test_distinct([1,5,7,9])
5 True
6 >>> test_distinct([2,4,5,5,7,9])
7 False
8 >>> test_distinct([1,2,3])
9 True

10 """
11 if len(data) == len(set(data)):
12 if False:
13 return True
14

15 # === completion by baseline model ===
16 return False
17

18 # === completion by our model ===
19 return True
20 else:
21 return False

Listing 1: DeadCoderInsertion (6B CodeGen)

NewLine Insertion. For newline insertions, ReCode will
randomly insert empty lines within prompts, and code mod-
els commonly perform poor robustness on newline inser-
tions as reported in (Wang et al., 2023b). In Listing 2, 6B
baseline model will generate low quality outputs if we sim-
ply insert two single empty lines at line 12 and line 15. Our
models remain correct under the perturbation.

1 def count_first_elements(test_tup):
2 """
3 Write a function to find the element

count that occurs before the record
in the given tuple.

4 >>> count_first_elements((1, 5, 7, (4,
6), 10))

5 3
6 >>> count_first_elements((2, 9, (5, 7)

, 11))
7 2
8 >>> count_first_elements((11, 15, 5,

8, (2, 3), 8))
9 4

10 """
11

12

13 for count, ele in enumerate(test_tup):
14

15

16 # === completion by baseline model ===
17 if isinstance(ele, tuple):
18 return count_first_elements(ele)
19

20 else:
21 return count
22

23 # === completion by our model ===
24 if isinstance(ele, tuple):
25 return count
26 return len(test_tup)

Listing 2: NewlineInsertion (6B CodeGen)

Synonym Substitution. To perform synonym substitution
on docstrings, ReCode will randomly select words within
docstrings or comments. It then replaces the selected words
to their synonyms according to WordNet (Miller, 1992). In
Listing 3, “have” is replaced to be “induce” and “given” to
“yield”. With only these two-word changes, 6B baseline
model fails. In contrast, our model is much more robust to
these changes.

1 def find_tuples(test_list, K):
2 """
3 Write a function to find tuples which

induce all element divisible by k
from the yield list of tuples.

4 >>> find_tuples([(6, 24, 12), (7, 9,
6), (12, 18, 21)], 6)

5 ’[(6, 24, 12)]’
6 >>> find_tuples([(5, 25, 30), (4, 2,

3), (7, 8, 9)], 5)
7 ’[(5, 25, 30)]’
8 >>> find_tuples([(7, 9, 16), (8, 16,

4), (19, 17, 18)], 4)
9 ’[(8, 16, 4)]’

10 """
11

12 # === completion by baseline model ===
13 return ’[’ + ’,’.join(map(str, filter(

lambda x: x[0] % K == 0, test_list)))
+ ’]’

14

15 # === completion by our model ===
16 return str(list(filter(lambda x: all(x

[i] % K == 0 for i in range(len(x))),
test_list)))

Listing 3: SynonymSubstitution (6B CodeGen)

CharCase Change for Function Name. For function
name perturbation, ReCode CharCase change is to randomly
replace characters in function name to their upper cases.
In Listing 4, “remove dirty chars”” are replaced with “re-
mOve dIrty cHarS”. With only four characters changed to
their upper cases, 6B baseline model will fail under such

14

CodeFort: Robust Training for Code Generation Models

perturbation. Our model demonstrates better robustness
performance.

1 def remOve_dIrty_cHarS(string,
second_string):

2 """
3 Write a function to remove

characters from the first string
which are present in the second
string.

4 >>> remOve_dIrty_cHarS("
probasscurve", "pros")

5 ’bacuve’
6 >>> remOve_dIrty_cHarS("

digitalindia", "talent")
7 ’digiidi’
8 >>> remOve_dIrty_cHarS("

exoticmiles", "toxic")
9 ’emles’

10 """
11

12 # === completion by baseline model ===
13 return string.replace(

second_string, "")
14

15 # === completion by our model ===
16 for char in second_string:
17 if char in string:
18 string = string.

replace(char, "")
19 return string

Listing 4: CharCase change for function name (6B
CodeGen)

D. Detailed Results for Ablations
Tables 6 and 7 shows detailed comparison among different
approaches across four perturbation classes.

D.1. Different Designs of ALP

This section compares different designs of ALP. In terms of
the KL divergence loss, two approaches are considered: (1)
optimizing both original and perturbed token prefixes simul-
taneously, i.e., bringing their output distributions closer at
the same time, denoted as Bo (both sides), and (2) optimiz-
ing only the perturbed token prefix, i.e., only bringing the
output distribution of the perturbed token prefix closer to
the original one, denoted as On (one side). Another aspect
involves whether to optimize all prefixes or just the ones
that are correctly predicted. The instance that optimizes all
prefixes is named Al (all), while the one optimizing only
correctly predicted prefixes is named CO (correct only). In
summary, there are four different ALP designs (two by two).
Lines [9]-[12] in Table 6 show that On + Al achieves the
best overall RP10@1 among the four design. Therefore, we
use this design throughout our experiments.

D.2. Different Designs of ALPD

This section compares three different designs of ALP. We
conduct two additional experiments: (1) dropout of 10%
arbitrary tokens, denoted as All, and (2) dropout of arbi-
trary tokens while following the same percentage as 10% of
variable and function names, denoted as AllS (all stratified).
Comparing line [2] with lines [6] and [7] in Table 7, we
observe that LALPD with 10% dropout on names achieves
the best overall NP@1 and RP10@1. Therefore, we use this
design throughout our experiments.

D.3. Effectiveness of Combining Context-Free and
Context-Sensitive Perturbations

Based on the ablation results, we choose to use LMBA +
LALP + LALPD for all the models in Section 5.2. Our ap-
proach involves training on the combination of context-free
and context-sensitive perturbations. Comparing the results
of our combined approach on CodeGen-350M in Table 1
with those in Table 6 line [5] and in Table 7 line [2], we ob-
serve an improvement in model robustness. Specifically, our
combined approach outperforms the other two approaches
that focus solely on either context-free or context-sensitive
perturbations in Docstring and Format.

15

CodeFort: Robust Training for Code Generation Models

Table 6: Ablation results of CodeGen-350M focusing on context-free perturbations, i.e., we apply LDA loss to the context-
sensitive perturbations except for the baseline LCLM.

Methods Docstring Function Syntax Format Overall Average

NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 Drop%

[0]LCLM 18.10 6.19 18.10 6.47 29.24 1.46 29.24 15.96 23.67 7.52 68.23
[1]LDA 18.10 7.45 18.10 7.94 30.11 8.59 30.11 18.58 24.10 10.64 55.85
[2]LMDA 17.57 8.12 17.57 7.91 29.96 9.31 29.96 19.07 23.77 11.10 53.30
[3]LMDA(p = 0.2) 17.91 7.36 17.91 7.84 31.30 8.88 31.30 17.86 24.60 10.48 57.40
[4]LMBA 18.24 7.17 18.24 8.21 31.56 10.02 31.56 18.65 24.90 11.01 55.78
[5]LMBA + LALP 18.03 7.38 18.03 8.19 31.30 11.92 31.30 18.44 24.67 11.48 53.47
[6]LCLM + LCSeq 17.52 7.17 17.52 7.56 30.07 1.37 30.07 15.06 23.80 7.79 62.27
[7]LMBA + LALP + LCTok 17.33 7.12 17.33 8.03 29.72 11.46 29.72 18.10 23.52 11.18 52.47
[8]LMBA + LALP + LCSeq 17.98 7.38 17.98 8.15 31.30 11.81 31.30 18.70 24.64 11.51 53.29
[9]LMBA + LALP(On + Co) + LCTok + LCSeq 17.36 7.35 17.36 7.91 29.42 11.12 29.42 18.09 23.39 11.12 52.46
[10]LMBA + LALP(On + Al) + LCTok + LCSeq 17.31 7.33 17.31 7.80 29.77 11.48 29.77 18.12 23.54 11.18 52.51
[11]LMBA + LALP(Bo + Co) + LCTok + LCSeq 16.87 7.19 16.87 7.72 29.40 11.07 29.40 17.82 23.14 10.95 52.68
[12]LMBA + LALP(Bo + Al) + LCTok + LCSeq 16.70 7.15 16.70 7.77 29.54 11.41 29.54 17.62 23.12 10.99 52.47

Table 7: Ablation results of CodeGen-350M focusing on context-sensitive perturbations, i.e., we apply LDA loss to the
context-free perturbations except for the baseline LCLM.

Methods Docstring Function Syntax Format Overall Average

NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 Robust%

[0]LCLM 18.10 6.19 18.10 6.47 29.24 1.46 29.24 15.96 23.67 7.52 31.77
[1]LMBA 18.68 8.19 18.68 8.56 30.98 7.72 30.98 18.54 24.83 10.75 43.29
[2]LMBA + LALPD 18.80 8.44 18.80 8.37 30.84 8.00 30.84 18.98 24.82 10.94 44.08
[3]LMBA + LCName 18.65 8.14 18.65 8.49 30.54 7.94 30.54 18.91 24.60 10.87 44.19
[4]LMBA + LALPD + LCName 18.63 8.12 18.63 8.26 30.69 7.82 30.69 18.98 24.66 10.80 43.80
[5]LMBA + LALPD + LCName + LCTok 18.31 7.79 18.31 7.80 30.53 8.17 30.53 17.93 24.42 10.42 42.67
[6]LMBA + LALPD(All) 18.07 8.66 18.07 8.12 30.33 7.56 30.33 18.88 24.20 10.80 44.63
[7]LMBA + LALPD(AllS) 18.37 8.12 18.37 8.73 30.51 7.49 30.51 18.08 24.44 10.61 43.42

16

